Summary
In medical research, social science, and biology, a cross-sectional study (also known as a cross-sectional analysis, transverse study, prevalence study) is a type of observational study that analyzes data from a population, or a representative subset, at a specific point in time—that is, cross-sectional data. In economics, cross-sectional studies typically involve the use of cross-sectional regression, in order to sort out the existence and magnitude of causal effects of one independent variable upon a dependent variable of interest at a given point in time. They differ from time series analysis, in which the behavior of one or more economic aggregates is traced through time. In medical research, cross-sectional studies differ from case-control studies in that they aim to provide data on the entire population under study, whereas case-control studies typically include only individuals who have developed a specific condition and compare them with a matched sample, often a tiny minority, of the rest of the population. Cross-sectional studies are descriptive studies (neither longitudinal nor experimental). Unlike case-control studies, they can be used to describe, not only the odds ratio, but also absolute risks and relative risks from prevalences (sometimes called prevalence risk ratio, or PRR). They may be used to describe some feature of the population, such as prevalence of an illness, but cannot prove cause and effect. Longitudinal studies differ from both in making a series of observations more than once on members of the study population over a period of time. Cross-sectional studies involve data collected at a defined time. They are often used to assess the prevalence of acute or chronic conditions, but cannot be used to answer questions about the causes of disease or the results of intervention. Cross-sectional data cannot be used to infer causality because temporality is not known. They may also be described as censuses. Cross-sectional studies may involve special data collection, including questions about the past, but they often rely on data originally collected for other purposes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.