In molecular cloning and biology, a gene knock-in (abbreviation: KI) refers to a genetic engineering method that involves the one-for-one substitution of DNA sequence information in a genetic locus or the insertion of sequence information not found within the locus. Typically, this is done in mice since the technology for this process is more refined and there is a high degree of shared sequence complexity between mice and humans. The difference between knock-in technology and traditional transgenic techniques is that a knock-in involves a gene inserted into a specific locus, and is thus a "targeted" insertion. It is the opposite of gene knockout.
A common use of knock-in technology is for the creation of disease models. It is a technique by which scientific investigators may study the function of the regulatory machinery (e.g. promoters) that governs the expression of the natural gene being replaced. This is accomplished by observing the new phenotype of the organism in question. The BACs and YACs are used in this case so that large fragments can be transferred.
Gene knock-in originated as a slight modification of the original knockout technique developed by Martin Evans, Oliver Smithies, and Mario Capecchi. Traditionally, knock-in techniques have relied on homologous recombination to drive targeted gene replacement, although other methods using a transposon-mediated system to insert the target gene have been developed. The use of loxP flanking sites that become excised upon expression of Cre recombinase with gene vectors is an example of this. Embryonic stem cells with the modification of interest are then implanted into a viable blastocyst, which will grow into a mature chimeric mouse with some cells having the original blastocyst cell genetic information and other cells having the modifications introduced to the embryonic stem cells. Subsequent offspring of the chimeric mouse will then have the gene knock-in.
Gene knock-in has allowed, for the first time, hypothesis-driven studies on gene modifications and resultant phenotypes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will take place from 3rd to 7th June 2024.It will introduce the workflows and techniques that are used for the analysis of bulk and single cell RNA-seq data. It will empower students to
A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the phenotype of an organism. Transgene describes a segment of DNA containing a gene sequence that has been isolated from one organism and is introduced into a different organism.
Explores higher-order interactions in brain networks using simplicial complexes and information theory, analyzing data from fMRI, financial time-series, and infectious diseases.
Background: Pseudomonas putida is a promising candidate for the industrial production of biofuels and biochemicals because of its high tolerance to toxic compounds and its ability to grow on a wide variety of substrates. Engineering this organism for impro ...
2020
Our genome is a long sequence of DNA that contains all the information to be able to constitute a living organism like us, similarly to what the letters in a book do to create a story. This sequence, which is a stretch of molecules called nucleotides, is a ...
Pioneer transcription factors (PTF) are a subset of transcription factors with nucleosome-binding properties allowing them to bind specific sequences in condensed chromatin. Although the biological functions of PTFs including target genes and epigenetic ch ...