In mathematics and in computer programming, a variadic function is a function of indefinite arity, i.e., one which accepts a variable number of arguments. Support for variadic functions differs widely among programming languages.
The term variadic is a neologism, dating back to 1936–1937. The term was not widely used until the 1970s.
There are many mathematical and logical operations that come across naturally as variadic functions. For instance, the summing of numbers or the concatenation of strings or other sequences are operations that can be thought of as applicable to any number of operands (even though formally in these cases the associative property is applied).
Another operation that has been implemented as a variadic function in many languages is output formatting. The C function and the Common Lisp function are two such examples. Both take one argument that specifies the formatting of the output, and any number of arguments that provide the values to be formatted.
Variadic functions can expose type-safety problems in some languages. For instance, C's , if used incautiously, can give rise to a class of security holes known as format string attacks. The attack is possible because the language support for variadic functions is not type-safe: it permits the function to attempt to pop more arguments off the stack than were placed there, corrupting the stack and leading to unexpected behavior. As a consequence of this, the CERT Coordination Center considers variadic functions in C to be a high-severity security risk.
In functional languages variadics can be considered complementary to the apply function, which takes a function and a list/sequence/array as arguments, and calls the function with the arguments supplied in that list, thus passing a variable number of arguments to the function. In the functional language Haskell, variadic functions can be implemented by returning a value of a type class ; if instances of are a final return value and a function , this allows for any number of additional arguments .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les étudiants perfectionnent leurs connaissances en Java et les mettent en pratique en réalisant un projet de taille conséquente. Ils apprennent à utiliser et à mettre en œuvre les principaux types de
We teach the fundamental aspects of analyzing and interpreting computer languages, including the techniques to build compilers. You will build a working compiler from an elegant functional language in
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
Tcl (pronounced "tickle" or as an initialism) is a high-level, general-purpose, interpreted, dynamic programming language. It was designed with the goal of being very simple but powerful. Tcl casts everything into the mold of a command, even programming constructs like variable assignment and procedure definition. Tcl supports multiple programming paradigms, including object-oriented, imperative, functional, and procedural styles. It is commonly used embedded into C applications, for rapid prototyping, scripted applications, GUIs, and testing.
In computer science, a calling convention is an implementation-level (low-level) scheme for how subroutines or functions receive parameters from their caller and how they return a result. When some code calls a function, design choices have been taken for where and how parameters are passed to that function, and where and how results are returned from that function, with these transfers typically done via certain registers or within a stack frame on the call stack.
Haskell (ˈhæskəl) is a general-purpose, statically-typed, purely functional programming language with type inference and lazy evaluation. Designed for teaching, research, and industrial applications, Haskell has pioneered a number of programming language features such as type classes, which enable type-safe operator overloading, and monadic input/output (IO). It is named after logician Haskell Curry. Haskell's main implementation is the Glasgow Haskell Compiler (GHC).
Ce cours initie à la programmation en utilisant le langage Java. Il ne présuppose pas de connaissance préalable. Les aspects plus avancés (programmation orientée objet) sont donnés dans un cours suiva
The purpose of this MOOC is to offer a complementary capstone project to our existing MOOCs in introduction to programming. This will offer the students the possibility to both stabilize the already a
Le cours suivi propose une introduction aux concepts de base de la programmation orientée objet tels que : encapsulation et abstraction, classes/objets, attributs/méthodes, héritage, polymorphisme, ..
Computer systems rely heavily on abstraction to manage the exponential growth of complexity across hardware and software. Due to practical considerations of compatibility between components of these complex systems across generations, developers have favou ...
We present syntax rewriting rules that translate Scala 2 code into Scala 3. Two major syntactic changes are introduced: new control structure syntax and significant indentation. We describe the design and the implementation of these rules and evaluate thei ...