In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An incidence structure is what is obtained when all other concepts are removed and all that remains is the data about which points lie on which lines. Even with this severe limitation, theorems can be proved and interesting facts emerge concerning this structure. Such fundamental results remain valid when additional concepts are added to form a richer geometry. It sometimes happens that authors blur the distinction between a study and the objects of that study, so it is not surprising to find that some authors refer to incidence structures as incidence geometries.
Incidence structures arise naturally and have been studied in various areas of mathematics. Consequently, there are different terminologies to describe these objects. In graph theory they are called hypergraphs, and in combinatorial design theory they are called block designs. Besides the difference in terminology, each area approaches the subject differently and is interested in questions about these objects relevant to that discipline. Using geometric language, as is done in incidence geometry, shapes the topics and examples that are normally presented. It is, however, possible to translate the results from one discipline into the terminology of another, but this often leads to awkward and convoluted statements that do not appear to be natural outgrowths of the topics. In the examples selected for this article we use only those with a natural geometric flavor.
A special case that has generated much interest deals with finite sets of points in the Euclidean plane and what can be said about the number and types of (straight) lines they determine. Some results of this situation can extend to more general settings since only incidence properties are considered.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
In finite geometry, the Fano plane (after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is PG(2, 2).
In geometry, an affine plane is a system of points and lines that satisfy the following axioms: Any two distinct points lie on a unique line. Given any line and any point not on that line there is a unique line which contains the point and does not meet the given line. (Playfair's axiom) There exist three non-collinear points (points not on a single line). In an affine plane, two lines are called parallel if they are equal or disjoint.
In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number of points. Although certain specific configurations had been studied earlier (for instance by Thomas Kirkman in 1849), the formal study of configurations was first introduced by Theodor Reye in 1876, in the second edition of his book Geometrie der Lage, in the context of a discussion of Desargues' theorem.
In this thesis we explore the applications of projective geometry, a mathematical theory of the relation between 3D scenes and their 2D images, in modern learning-based computer vision systems. This is an interesting research question which contradicts the ...
EPFL2024
We present a massively parallel and scalable nodal discontinuous Galerkin finite element method (DGFEM) solver for the time-domain linearized acoustic wave equations. The solver is implemented using the libParanumal finite element framework with extensions ...
London2023
, , , ,
This paper shows a computational workflow to design a kit of parts consisting of linear bars and spherical joints that can be employed to assemble, take apart, and rebuild diverse reticular structures, e.g. gridshells and space frames. Being able to reuse ...