Summary
Peak water is a concept that underlines the growing constraints on the availability, quality, and use of freshwater resources. Peak water was defined in 2010 by Peter Gleick and Meena Palaniappan. They distinguish between peak renewable, peak non-renewable, and peak ecological water to demonstrate the fact that although there is a vast amount of water on the planet, sustainably managed water is becoming scarce. Lester R. Brown, president of the Earth Policy Institute, wrote in 2013 that although there was extensive literature on peak oil, it was peak water that is "the real threat to our future". An assessment was published in August 2011 in the Stockholm International Water Institute's journal. Much of the world's water in underground aquifers and in lakes can be depleted and thus resembles a finite resource. The phrase peak water sparks debates similar to those about peak oil. In 2010, New York Times chose "peak water" as one of its 33 "Words of the Year". There are concerns about impending peak water in several areas around the world: Peak ecological water, where ecological and environmental constraints are overwhelming the economic benefits provided by water use Peak non-renewable water, where groundwater aquifers are being overpumped (or contaminated) faster than nature recharges them (this example is most like the peak oil debate) Peak renewable water, where entire renewable flows are being consumed for human use If present trends continue, 1.8 billion people will be living with absolute water scarcity by 2025, and two-thirds of the world could be subject to water stress. Ultimately, peak water is not about running out of freshwater, but about reaching physical, economic, and environmental limits on meeting human demands for water and the subsequent decline of water availability and use. The Hubbert curve has become popular in the scientific community for predicting the depletion of various natural resources. M. King Hubbert created this measurement device in 1956 for a variety of finite resources such as coal, oil, natural gas and uranium.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (37)
Related courses (4)
ENV-424: Water resources engineering
Water resources engineering designs systems to control the quantity, quality, timing, and distribution of water to support human demands and the needs of the environment.
PENS-225: Rhonescape
RHONEscape aims at realizing the necessary interdisciplinary educational background of the problematics affecting highly-corrected large rivers, by examining riverine ecological, hydrological and morp
PHYS-452: Radiation detection
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well
Show more