In mathematics, mollifiers (also known as approximations to the identity) are smooth functions with special properties, used for example in distribution theory to create sequences of smooth functions approximating nonsmooth (generalized) functions, via convolution. Intuitively, given a function which is rather irregular, by convolving it with a mollifier the function gets "mollified", that is, its sharp features are smoothed, while still remaining close to the original nonsmooth (generalized) function.
They are also known as Friedrichs mollifiers after Kurt Otto Friedrichs, who introduced them.
Mollifiers were introduced by Kurt Otto Friedrichs in his paper , which is considered a watershed in the modern theory of partial differential equations. The name of this mathematical object had a curious genesis, and Peter Lax tells the whole story in his commentary on that paper published in Friedrichs' "Selecta". According to him, at that time, the mathematician Donald Alexander Flanders was a colleague of Friedrichs: since he liked to consult colleagues about English usage, he asked Flanders an advice on how to name the smoothing operator he was using. Flanders was a puritan, nicknamed by his friends Moll after Moll Flanders in recognition of his moral qualities: he suggested to call the new mathematical concept a "mollifier" as a pun incorporating both Flanders' nickname and the verb 'to mollify', meaning 'to smooth over' in a figurative sense.
Previously, Sergei Sobolev used mollifiers in his epoch making 1938 paper, which contains the proof of the Sobolev embedding theorem: Friedrichs himself acknowledged Sobolev's work on mollifiers stating that:-"These mollifiers were introduced by Sobolev and the author...".
It must be pointed out that the term "mollifier" has undergone linguistic drift since the time of these foundational works: Friedrichs defined as "mollifier" the integral operator whose kernel is one of the functions nowadays called mollifiers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
In mathematical analysis, more precisely in microlocal analysis, the wave front (set) WF(f) characterizes the singularities of a generalized function f, not only in space, but also with respect to its Fourier transform at each point. The term "wave front" was coined by Lars Hörmander around 1970. In more familiar terms, WF(f) tells not only where the function f is singular (which is already described by its singular support), but also how or why it is singular, by being more exact about the direction in which the singularity occurs.
In mathematics, generalized functions are objects extending the notion of functions. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful in making discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. A common feature of some of the approaches is that they build on operator aspects of everyday, numerical functions.
In mathematics, a bump function (also called a test function) is a function on a Euclidean space which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supported. The set of all bump functions with domain forms a vector space, denoted or The dual space of this space endowed with a suitable topology is the space of distributions. The function given by is an example of a bump function in one dimension.
We consider the problem of provably finding a stationary point of a smooth function to be minimized on the variety of bounded-rank matrices. This turns out to be unexpectedly delicate. We trace the difficulty back to a geometric obstacle: On a nonsmooth se ...
SPRINGER HEIDELBERG2022
When learning from data, leveraging the symmetries of the domain the data lies on is a principled way to combat the curse of dimensionality: it constrains the set of functions to learn from. It is more data efficient than augmentation and gives a generaliz ...
EPFL2022
, ,
This article studies a class of nonsmooth decentralized multiagent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common nonsmooth term. We propose a general primal-dual algorithmic framewor ...