In computing, a unique type guarantees that an object is used in a single-threaded way, with at most a single reference to it. If a value has a unique type, a function applied to it can be optimized to update the value in-place in the object code. Such in-place updates improve the efficiency of functional languages while maintaining referential transparency. Unique types can also be used to integrate functional and imperative programming.
Uniqueness typing is best explained using an example. Consider a function readLine that reads the next line of text from a given file:
function readLine(File f) returns String
return line where
String line = doImperativeReadLineSystemCall(f)
end
end
Now doImperativeReadLineSystemCall reads the next line from the file using an OS-level system call which has the side effect of changing the current position in the file. But this violates referential transparency because calling it multiple times with the same argument will return different results each time as the current position in the file gets moved. This in turn makes readLine violate referential transparency because it calls doImperativeReadLineSystemCall.
However, using uniqueness typing, we can construct a new version of readLine that is referentially transparent even though it's built on top of a function that's not referentially transparent:
function readLine2(unique File f) returns (unique File, String)
return (differentF, line) where
String line = doImperativeReadLineSystemCall(f)
File differentF = newFileFromExistingFile(f)
end
end
The unique declaration specifies that the type of f is unique; that is to say that f may never be referred to again by the caller of readLine2 after readLine2 returns, and this restriction is enforced by the type system. And since readLine2 does not return f itself but rather a new, different file object differentF, this means that it's impossible for readLine2 to be called with f as an argument ever again, thus preserving referential transparency while allowing for side effects to occur.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course introduces the foundations on which programs and programming languages are built. It introduces syntax, types and semantics as building blocks that together define the properties of a progr
Substructural type systems are a family of type systems analogous to substructural logics where one or more of the structural rules are absent or only allowed under controlled circumstances. Such systems are useful for constraining access to system resources such as , locks, and memory by keeping track of changes of state that occur and preventing invalid states. Several type systems have emerged by discarding some of the structural rules of exchange, weakening, and contraction: Ordered type systems (discard exchange, weakening and contraction): Every variable is used exactly once in the order it was introduced.
In computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type (for example, integer, floating point, string) to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term.
Haskell (ˈhæskəl) is a general-purpose, statically-typed, purely functional programming language with type inference and lazy evaluation. Designed for teaching, research, and industrial applications, Haskell has pioneered a number of programming language features such as type classes, which enable type-safe operator overloading, and monadic input/output (IO). It is named after logician Haskell Curry. Haskell's main implementation is the Glasgow Haskell Compiler (GHC).
The Javadoc paradigm for displaying API documentation to users is quite popular, with similar variants existing for many mainstream languages. However, two user interface design properties of Javadoc may reduce its utility when displaying documentation for ...
An important application of unique object references is safe and efficient message passing in concurrent object-oriented programming. However, to prevent the ill effects of aliasing, practical systems often severely restrict the shape of messages passed by ...
Springer2010
, ,
A scalable programming language is one in which the same concepts can describe small as well as large parts. Towards this goal, Scala unifies concepts from object and module systems. An essential ingredient of this unification is the concept of objects wit ...