Wilting is the loss of rigidity of non-woody parts of plants. This occurs when the turgor pressure in non-lignified plant cells falls towards zero, as a result of diminished water in the cells. Wilting also serves to reduce water loss, as it makes the leaves expose less surface area. The rate of loss of water from the plant is greater than the absorption of water in the plant. The process of wilting
modifies the leaf angle distribution of the plant (or canopy) towards more erectophile conditions.
Lower water availability may result from:
drought conditions, where the soil moisture drops below conditions most favorable for plant functioning;
the temperature falls to the point where the plant's vascular system cannot function;
high salinity, which causes water to diffuse from the plant cells and induce shrinkage;
saturated soil conditions, where roots are unable to obtain sufficient oxygen for cellular respiration, and so are unable to transport water into the plant; or
bacteria or fungi that clog the plant's vascular system.
Wilting diminishes the plant's ability to transpire and grow. Permanent wilting leads to plant death. Symptoms of wilting and blights resemble one another.
The plants may recover during the night when evaporation is reduced as the stomata closes.
In woody plants, reduced water availability leads to cavitation of the xylem.
Wilting occurs in plants such as balsam and holy basil. Wilting is an effect of the plant growth-inhibiting hormone, abscisic acid.
With cucurbits, wilting can be caused by the squash vine borer.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers. Water is necessary for plants but only a small amount of water taken up by the roots is used for growth and metabolism. The remaining 97–99.5% is lost by transpiration and guttation. Leaf surfaces are dotted with pores called stomata (singular "stoma"), and in most plants they are more numerous on the undersides of the foliage.
Turgor pressure is the force within the cell that pushes the plasma membrane against the cell wall. It is also called hydrostatic pressure, and is defined as the pressure in a fluid measured at a certain point within itself when at equilibrium. Generally, turgor pressure is caused by the osmotic flow of water and occurs in plants, fungi, and bacteria. The phenomenon is also observed in protists that have cell walls. This system is not seen in animal cells, as the absence of a cell wall would cause the cell to lyse when under too much pressure.
A fungus (: fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from the other eukaryotic kingdoms, which, by one traditional classification, includes Plantae, Animalia, Protozoa, and Chromista. A characteristic that places fungi in a different kingdom from plants, bacteria, and some protists is chitin in their cell walls.
The estimation of plant-available soil water (PASW) is essential to quantify transpiration fluxes, the onset of heatwaves, irrigation water management, land-use decisions, vegetation ecology, and land surface memory in climate models. PASW is the amount of ...
Plant cells harness osmotic pressures to stiffen their leaves through strong turgor pressures. Key to this osmosisdriven stiffening is the confinement of liquids within semipermeable membranes that can regulate the transport of water molecules and ions. In ...
Elsevier2024
, ,
Enhancing tree diversity may be important to fostering resilience to drought-related climate extremes. So far, little attention has been given to whether tree diversity can increase the survival of trees and reduce its variability in young forest plantatio ...