In data communications, flow control is the process of managing the rate of data transmission between two nodes to prevent a fast sender from overwhelming a slow receiver. Flow control should be distinguished from congestion control, which is used for controlling the flow of data when congestion has actually occurred. Flow control mechanisms can be classified by whether or not the receiving node sends feedback to the sending node.
Flow control is important because it is possible for a sending computer to transmit information at a faster rate than the destination computer can receive and process it. This can happen if the receiving computers have a heavy traffic load in comparison to the sending computer, or if the receiving computer has less processing power than the sending computer.
Stop-and-wait ARQ
Stop-and-wait flow control is the simplest form of flow control. In this method the message is broken into multiple frames, and the receiver indicates its readiness to receive a frame of data. The sender waits for a receipt acknowledgement (ACK) after every frame for a specified time (called a time out). The receiver sends the ACK to let the sender know that the frame of data was received correctly. The sender will then send the next frame only after the ACK.
Sender: Transmits a single frame at a time.
Sender waits to receive ACK within time out.
Receiver: Transmits acknowledgement (ACK) as it receives a frame.
Go to step 1 when ACK is received, or time out is hit.
If a frame or ACK is lost during transmission then the frame is re-transmitted. This re-transmission process is known as ARQ (automatic repeat request).
The problem with Stop-and-wait is that only one frame can be transmitted at a time, and that often leads to inefficient transmission, because until the sender receives the ACK it cannot transmit any new packet. During this time both the sender and the channel are unutilised.
Pros
The only advantage of this method of flow control is its simplicity.
Cons
The sender needs to wait for the ACK after every frame it transmits.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides an overview of information security and privacy topics. It introduces students to the knowledge and tools they will need to deal with the security/privacy challenges they are like
Covers the introduction to Controller Area Network (CAN) and CANopen protocols used in spacecraft avionics systems, including network standards, future trends, and communication objects.
Asynchronous serial communication is a form of serial communication in which the communicating endpoints' interfaces are not continuously synchronized by a common clock signal. Instead of a common synchronization signal, the data stream contains synchronization information in form of start and stop signals, before and after each unit of transmission, respectively. The start signal prepares the receiver for arrival of data and the stop signal resets its state to enable triggering of a new sequence.
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies. The nodes of a computer network can include personal computers, servers, networking hardware, or other specialized or general-purpose hosts.
Null modem is a communication method to directly connect two DTEs (computer, terminal, printer, etc.) using an RS-232 serial cable. The name stems from the historical use of RS-232 cables to connect two teleprinter devices or two modems in order to communicate with one another; null modem communication refers to using a crossed-over RS-232 cable to connect the teleprinters directly to one another without the modems. It is also used to serially connect a computer to a printer, since both are DTE, and is known as a Printer Cable.
Time-sensitive networks provide worst-case guarantees for applications in domains such as the automobile, automation, avionics, and the space industries. A violation of these guarantees can cause considerable financial loss and serious damage to human live ...
We developed a prototype for measuring physiological data for pulse transit time (PTT) estimation that will be used for ambulatory blood pressure (BP) monitoring. The device is comprised of an embedded system with multimodal sensors that streams high-throu ...
A stochastic model predictive control framework over unreliable Bernoulli communication channels, in the presence of unbounded process noise and under bounded control inputs, is presented for tracking a reference signal. The data losses in the control chan ...