Summary
In the mathematical field of graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and all of the edges (from the original graph) connecting pairs of vertices in that subset. Formally, let be any graph, and let be any subset of vertices of G. Then the induced subgraph is the graph whose vertex set is and whose edge set consists of all of the edges in that have both endpoints in . That is, for any two vertices , and are adjacent in if and only if they are adjacent in . The same definition works for undirected graphs, directed graphs, and even multigraphs. The induced subgraph may also be called the subgraph induced in by , or (if context makes the choice of unambiguous) the induced subgraph of . Important types of induced subgraphs include the following. Induced paths are induced subgraphs that are paths. The shortest path between any two vertices in an unweighted graph is always an induced path, because any additional edges between pairs of vertices that could cause it to be not induced would also cause it to be not shortest. Conversely, in distance-hereditary graphs, every induced path is a shortest path. Induced cycles are induced subgraphs that are cycles. The girth of a graph is defined by the length of its shortest cycle, which is always an induced cycle. According to the strong perfect graph theorem, induced cycles and their complements play a critical role in the characterization of perfect graphs. Cliques and independent sets are induced subgraphs that are respectively complete graphs or edgeless graphs. Induced matchings are induced subgraphs that are matchings. The neighborhood of a vertex is the induced subgraph of all vertices adjacent to it. The induced subgraph isomorphism problem is a form of the subgraph isomorphism problem in which the goal is to test whether one graph can be found as an induced subgraph of another. Because it includes the clique problem as a special case, it is NP-complete.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
PHYS-512: Statistical physics of computation
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
ME-427: Networked control systems
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun