Concept

Schoch line

In geometry, the Schoch line is a line defined from an arbelos and named by Peter Woo after Thomas Schoch, who had studied it in conjunction with the Schoch circles. An arbelos is a shape bounded by three mutually-tangent semicircular arcs with collinear endpoints, with the two smaller arcs nested inside the larger one; let the endpoints of these three arcs be (in order along the line containing them) A, B, and C. Let K1 and K2 be two more arcs, centered at A and C, respectively, with radii AB and CB, so that these two arcs are tangent at B; let K3 be the largest of the three arcs of the arbelos. A circle, with the center A1, is then created tangent to the arcs K1, K2, and K3. This circle is congruent with Archimedes' twin circles, making it an Archimedean circle; it is one of the Schoch circles. The Schoch line is perpendicular to the line AC and passes through the point A1. It is also the location of the centers of infinitely many Archimedean circles, e.g. the Woo circles.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
Related concepts (2)
Woo circles
In geometry, the Woo circles, introduced by Peter Y. Woo, are a set of infinitely many Archimedean circles. Form an arbelos with the two inner semicircles tangent at point C. Let m denote any nonnegative real number. Draw two circles, with radii m times the radii of the smaller two arbelos semicircles, centered on the arbelos ground line, also tangent to each other at point C and with radius m times the radius of the corresponding small arbelos arc. Any circle centered on the Schoch line and externally tangent to the circles is a Woo circle.
Arbelos
In geometry, an arbelos is a plane region bounded by three semicircles with three apexes such that each corner of each semicircle is shared with one of the others (connected), all on the same side of a straight line (the baseline) that contains their diameters. The earliest known reference to this figure is in Archimedes's Book of Lemmas, where some of its mathematical properties are stated as Propositions 4 through 8. The word arbelos is Greek for 'shoemaker's knife'. The figure is closely related to the Pappus chain.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.