The Generation of Animals (or On the Generation of Animals; Greek: Περὶ ζῴων γενέσεως (Peri Zoion Geneseos); Latin: De Generatione Animalium) is one of the biological works of the Corpus Aristotelicum, the collection of texts traditionally attributed to Aristotle (384 – 322BC). The work provides an account of animal reproduction, gestation and heredity.
Generation of Animals consists of five books, which are themselves split into varying numbers of chapters. Most editions of this work categorise it with Bekker numbers. In general, each book covers a range of related topics, however there is also a significant amount of overlap in the content of the books. For example, while one of the two principal topics covered in book I is the function of semen (gone, sperma), this account is not finalised until partway through book II.
Book I (715a - 731b)
Chapter 1 begins with Aristotle claiming to have already addressed the parts of animals, referencing the author's work of the same name. While this and possibly his other biological works, have addressed three of the four causes pertaining to animals, the final, formal, and material, the efficient cause has yet to be spoken of. He argues that the efficient cause, or "that from which the source of movement comes" can be addressed with an inquiry into the generation of animals. Aristotle then provides a general overview of the processes of reproduction adopted by the various genera, for instance most 'blooded' animals reproduce by coition of a male and female of the same species, but cases vary for 'bloodless' animals.
The reproductive organs of males and females are also investigated. Through chapters 2-5 Aristotle successively describes the general reproductive features common to each sex, the differences in reproductive parts among blooded animals, the causes of differences of testes in particular, and why some animals do not have external reproductive organs. The latter provides clear examples of Aristotle's teleological approach to causation, as it is applied to biology.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Aristotle's biology is the theory of biology, grounded in systematic observation and collection of data, mainly zoological, embodied in Aristotle's books on the science. Many of his observations were made during his stay on the island of Lesbos, including especially his descriptions of the marine biology of the Pyrrha lagoon, now the Gulf of Kalloni. His theory is based on his concept of form, which derives from but is markedly unlike Plato's theory of Forms.
The four causes or four explanations are, in Aristotelian thought, four fundamental types of answer to the question "why?", in analysis of change or movement in nature: the material, the formal, the efficient, and the final. Aristotle wrote that "we do not have knowledge of a thing until we have grasped its why, that is to say, its cause." While there are cases in which classifying a "cause" is difficult, or in which "causes" might merge, Aristotle held that his four "causes" provided an analytical scheme of general applicability.
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary information encoded in genes, which can be transmitted to future generations. Another major theme is evolution, which explains the unity and diversity of life. Energy processing is also important to life as it allows organisms to move, grow, and reproduce.
Aujourd'hui, les géants de l'infrastructure que sont les centres commerciaux meurent de vieillesse et de manque d'adaptabilité, ce qui donne aux architectes l'occasion d'apporter leur expertise pour les transformer et les adapter aux besoins actuels. Le Ce ...
PRODUCTION NETTE DE L’ÉCOSYSTÈME DANS LES LACS – DÉTERMINATION GRÂCE AUX DONNÉES DE MONITORING Les algues et les cyanobactéries se développent dans la couche de surface productive des lacs par l’absorption de CO2, de lumière et de nutriments. Malgré sa réu ...
2021
, , ,
Oviparous animals across many taxa have evolved diverse strategies that deter egg predation, providing valuable tests of how natural selection mitigates direct fitness loss. Communal egg laying in nonsocial species minimizes egg predation. However, in cann ...