In statistics, the concept of being an invariant estimator is a criterion that can be used to compare the properties of different estimators for the same quantity. It is a way of formalising the idea that an estimator should have certain intuitively appealing qualities. Strictly speaking, "invariant" would mean that the estimates themselves are unchanged when both the measurements and the parameters are transformed in a compatible way, but the meaning has been extended to allow the estimates to change in appropriate ways with such transformations. The term equivariant estimator is used in formal mathematical contexts that include a precise description of the relation of the way the estimator changes in response to changes to the dataset and parameterisation: this corresponds to the use of "equivariance" in more general mathematics.
In statistical inference, there are several approaches to estimation theory that can be used to decide immediately what estimators should be used according to those approaches. For example, ideas from Bayesian inference would lead directly to Bayesian estimators. Similarly, the theory of classical statistical inference can sometimes lead to strong conclusions about what estimator should be used. However, the usefulness of these theories depends on having a fully prescribed statistical model and may also depend on having a relevant loss function to determine the estimator. Thus a Bayesian analysis might be undertaken, leading to a posterior distribution for relevant parameters, but the use of a specific utility or loss function may be unclear. Ideas of invariance can then be applied to the task of summarising the posterior distribution. In other cases, statistical analyses are undertaken without a fully defined statistical model or the classical theory of statistical inference cannot be readily applied because the family of models being considered are not amenable to such treatment.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
Robust statistics are statistics with good performance for data drawn from a wide range of probability distributions, especially for distributions that are not normal. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters. One motivation is to produce statistical methods that are not unduly affected by outliers. Another motivation is to provide methods with good performance when there are small departures from a parametric distribution.
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.
In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. Its importance derives mainly from the multivariate central limit theorem.
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...
We study the problem of learning unknown parameters in stochastic interacting particle systems with polynomial drift, interaction, and diffusion functions from the path of one single particle in the system. Our estimator is obtained by solving a linear sys ...
In this thesis we study stability from several viewpoints. After covering the practical importance, the rich history and the ever-growing list of manifestations of stability, we study the following. (i) (Statistical identification of stable dynamical syste ...