In chemistry, photocatalysis is the acceleration of a photoreaction in the presence of a photocatalyst, the excited state of which "repeatedly interacts with the reaction partners forming reaction intermediates and regenerates itself after each cycle of such interactions." In many cases, the catalyst is a solid that upon irradiation with UV- or visible light generates electron–hole pairs that generate free radicals. Photocatalysts belong to three main groups; heterogeneous, homogeneous, and plasmonic antenna-reactor catalysts. The use of each catalysts depends on the preferred application and required catalysis reaction.
The earliest mention came in 1911, when German chemist Dr. Alexander Eibner integrated the concept in his research of the illumination of zinc oxide (ZnO) on the bleaching of the dark blue pigment, Prussian blue. Around this time, Bruner and Kozak published an article discussing the deterioration of oxalic acid in the presence of uranyl salts under illumination, while in 1913, Landau published an article explaining the phenomenon of photocatalysis. Their contributions led to the development of actinometric measurements, measurements that provide the basis of determining photon flux in photochemical reactions. After a hiatus, in 1921, Baly et al. used ferric hydroxides and colloidal uranium salts as catalysts for the creation of formaldehyde under visible light.
In 1938 Doodeve and Kitchener discovered that TiO2 , a highly-stable and non-toxic oxide, in the presence of oxygen could act as a photosensitizer for bleaching dyes, as ultraviolet light absorbed by TiO2 led to the production of active oxygen species on its surface, resulting in the blotching of organic chemicals via photooxidation. This was the first observation of the fundamental characteristics of heterogeneous photocatalysis.
Research in photocatalysis again paused until1964, when V.N. Filimonov investigated isopropanol photooxidation from ZnO and TiO2 ; while in 1965 Kato and Mashio, Doerffler and Hauffe, and Ikekawa et al.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers the fundamental and applied aspects of electrocatalysis related to renewable energy conversion and storage. The focus is on catalysis for hydrogen evolution, oxygen evolution, and C
Following "Photochemistry I", this course introduces the current theoretical models regarding the dynamics of electron transfer. It focuses then on photoredox processes at the surface of solids. Curre
Lectures from leading members in Chemical Engineering on: Catalysis, nanotechnology, material synthesis, process engineering, separations, energy, green chemistry, biotechnology, biocatalysis, systems
Photosensitizers are light absorbers that alters the course of a photochemical reaction. They usually are catalysts. They can function by many mechanisms, sometimes they donate an electron to the substrate, sometimes they abstract a hydrogen atom from the substrate. At the end of this process, the photosensitizer returns to its ground state, where it remains chemically intact, poised to absorb more light. One branch of chemistry which frequently utilizes photosensitizers is polymer chemistry, using photosensitizers in reactions such as photopolymerization, photocrosslinking, and photodegradation.
Titanium dioxide, also known as titanium(IV) oxide or titania taɪˈteɪniə, is the inorganic compound with the chemical formula TiO2. When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. It is a white solid that is insoluble in water, although mineral forms can appear black. As a pigment, it has a wide range of applications, including paint, sunscreen, and food coloring. When used as a food coloring, it has E number E171. World production in 2014 exceeded 9 million tonnes.
Heavy metals are generally defined as metals with relatively high densities, atomic weights, or atomic numbers. The criteria used, and whether metalloids are included, vary depending on the author and context. In metallurgy, for example, a heavy metal may be defined on the basis of density, whereas in physics the distinguishing criterion might be atomic number, while a chemist would likely be more concerned with chemical behaviour. More specific definitions have been published, none of which have been widely accepted.
Explores semiconductor-assisted photocatalysis for water splitting and pollution remediation using TiO₂ and WO3.
Explores nanoscale heat transfer, photon density, and energy conversion in nanophotonic engineering applications.
Covers solar energy conversion using nanomaterials and photoelectrochemistry, focusing on light absorbers, catalyst matching, stability, and efficiency.
Molecular junctions represent a fascinating frontier in the realm of nanotechnology and are one of thesmallest optoelectronic devices possible, consisting of individual molecules or a group of moleculesthat serve as the active element sandwiched between co ...
EPFL2024
,
Pt(II)-based molecular catalysts stand as a prototypical system in hydrogen evolution reactions (HER) owing to their consistently elevated activity levels. Their integration into heterogeneous systems thus provides an ideal platform to develop catalytic ma ...
Plasmonic photochemistry has a large potential to replace energy-intensive chemical processes with low-temperature, low-pressure light-driven chemical reactions. Plasmonic nanostructures have emerged as promising photocatalysts with exceptional and tunable ...