In chemistry, an ionophore () is a chemical species that reversibly binds ions. Many ionophores are lipid-soluble entities that transport ions across the cell membrane. Ionophores catalyze ion transport across hydrophobic membranes, such as liquid polymeric membranes (carrier-based ion selective electrodes) or lipid bilayers found in the living cells or synthetic vesicles (liposomes). Structurally, an ionophore contains a hydrophilic center and a hydrophobic portion that interacts with the membrane. Some ionophores are synthesized by microorganisms to import ions into their cells. Synthetic ion carriers have also been prepared. Ionophores selective for cations and anions have found many applications in analysis. These compounds have also shown to have various biological effects and a synergistic effect when combined with the ion they bind. Biological activities of metal ion-binding compounds can be changed in response to the increment of the metal concentration, and based on the latter compounds can be classified as "metal ionophores", "metal chelators" or "metal shuttles". If the biological effect is augmented by increasing the metal concentration, it is classified as a "metal ionophore". If the biological effect is decreased or reversed by increasing the metal concentration, it is classified as a "metal chelator". If the biological effect is not affected by increasing the metal concentration, and the compound-metal complex enters the cell, it is classified as a "metal shuttle". The term ionophore (from Greek ion carrier or ion bearer) was proposed by Berton Pressman in 1967 when he and his colleagues were investigating the antibiotic mechanisms of valinomycin and nigericin. Many ionophores are produced naturally by a variety of microbes, fungi and plants, and act as a defense against competing or pathogenic species. Multiple synthetic membrane-spanning ionophores have also been synthesized. The two broad classifications of ionophores synthesized by microorganisms are: Carrier ionophores that bind to a particular ion and shield its charge from the surrounding environment.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (1)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.