Atom economy (atom efficiency/percentage) is the conversion efficiency of a chemical process in terms of all atoms involved and the desired products produced. The simplest definition was introduced by Barry Trost in 1991 and is equal to the ratio between the mass of desired product to the total mass of products, expressed as a percentage. The concept of atom economy (AE) and the idea of making it a primary criterion for improvement in chemistry, is a part of the green chemistry movement that was championed by Paul Anastas from the early 1990s. Atom economy is an important concept of green chemistry philosophy, and one of the most widely used metrics for measuring the "greenness" of a process or synthesis.
Good atom economy means most of the atoms of the reactants are incorporated in the desired products and only small amounts of unwanted byproducts are formed, reducing the economic and environmental impact of waste disposal.
Atom economy can be written as:
For example, if we consider the reaction
where C is the desired product, then
Optimal atom economy is 100%.
Atom economy is a different concern than chemical yield, because a high-yielding process can still result in substantial byproducts. Examples include the Cannizzaro reaction, in which approximately 50% of the reactant aldehyde becomes the other oxidation state of the target; the Wittig and Suzuki reactions which use high-mass reagents that ultimately become waste; and the Gabriel synthesis, which produces a stoichiometric quantity of phthalic acid salts.
If the desired product has an enantiomer the reaction needs to be sufficiently stereoselective even when atom economy is 100%. A Diels-Alder reaction is an example of a potentially very atom efficient reaction that also can be chemo-, regio-, diastereo- and enantioselective. Catalytic hydrogenation comes the closest to being an ideal reaction that is extensively practiced both industrially and academically.
Atom economy can also be adjusted if a pendant group is recoverable, for example Evans auxiliary groups.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This training will empowered the student with all the tools of modern chemistry, which will be highly useful for his potential career as a process or medicinal chemist in industry.
The cobalt-catalyzed hydrohydrazination reaction of dienes and enynes is presented. Allylic and propargylic hydrazides were obtained in synthetically useful yields (allylic amines, 60-90%; propargylic amines, 47-83%) and good chemo- and regioselectivity. [ ...