Concept

Linnaean taxonomy

Linnaean taxonomy can mean either of two related concepts: The particular form of biological classification (taxonomy) set up by Carl Linnaeus, as set forth in his Systema Naturae (1735) and subsequent works. In the taxonomy of Linnaeus there are three kingdoms, divided into classes, and they, in turn, into lower ranks in a hierarchical order. A term for rank-based classification of organisms, in general. That is, taxonomy in the traditional sense of the word: rank-based scientific classification. This term is especially used as opposed to cladistic systematics, which groups organisms into clades. It is attributed to Linnaeus, although he neither invented the concept of ranked classification (it goes back to Plato and Aristotle) nor gave it its present form. In fact, it does not have an exact present form, as "Linnaean taxonomy" as such does not really exist: it is a collective (abstracting) term for what actually are several separate fields, which use similar approaches. Linnaean name also has two meanings: depending on the context, it may either refer to a formal name given by Linnaeus (personally), such as Giraffa camelopardalis Linnaeus, 1758, or a formal name in the accepted nomenclature (as opposed to a modernistic clade name). In his Imperium Naturae, Linnaeus established three kingdoms, namely Regnum Animale, Regnum Vegetabile and Regnum Lapideum. This approach, the Animal, Vegetable and Mineral Kingdoms, survives today in the popular mind, notably in the form of the parlour game question: "Is it animal, vegetable or mineral?". The work of Linnaeus had a huge impact on science; it was indispensable as a foundation for biological nomenclature, now regulated by the nomenclature codes. Two of his works, the first edition of the Species Plantarum (1753) for plants and the tenth edition of the Systema Naturae (1758), are accepted as part of the starting points of nomenclature; his binomials (names for species) and generic names take priority over those of others. However, the impact he had on science was not because of the value of his taxonomy.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (1)
CS-411: Digital education
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies: do student actually l
Related lectures (16)
Controversy Analysis: Controversy Studies
Explores the analysis of scientific controversies, including rivalries between social groups, interpretive flexibility, and closure mechanisms.
Taxonomy Induction: Learning Concepts and Relationships
Explores taxonomy induction, learning relationships and concepts from documents.
Learning sciences concepts
Explores sensory memory, cognitive load, metacognition, and instructional design concepts.
Show more
Related publications (35)

Mechanism balancing taxonomy

Simon Nessim Henein, Florent Cosandier, Hubert Pierre-Marie Benoît Schneegans

The balancing of mechanisms consists in distributing their moving masses, inertias, and elastic components in order to achieve key mechanical properties, such as the elimination of the shaking forces and moments exported onto their supporting structure or ...
2023

Language Model Decoding as Likelihood–Utility Alignment

Boi Faltings, Robert West, Maxime Jean Julien Peyrard, Martin Josifoski, Valentin Hartmann, Debjit Paul, Jiheng Wei, Frano Rajic

A critical component of a successful language generation pipeline is the decoding algorithm. However, the general principles that should guide the choice of a decoding algorithm re- main unclear. Previous works only compare decoding algorithms in narrow sc ...
2023

The microbiome of cryospheric ecosystems

Tom Ian Battin, Hannes Markus Peter, Susheel Bhanu Busi, Grégoire Marie Octave Edouard Michoud, Leïla Ezzat, Massimo Bourquin, Tyler Joe Kohler, Stylianos Fodelianakis

The cryosphere includes those parts of Earth where water or soil is frozen, such as snow, ice, glaciers and permafrost soils. Here, the authors present a global inventory of cryospheric microbial communities and their genetic repertoires. The melting of th ...
NATURE PORTFOLIO2022
Show more
Related concepts (24)
Animal
Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, have myocytes and are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. As of 2022, 2.16 million living animal species have been described—of which around 1.05 million are insects, over 85,000 are molluscs, and around 65,000 are vertebrates—but it has been estimated there are around 7.
Taxonomy (biology)
In biology, taxonomy () is the scientific study of naming, defining (circumscribing) and classifying groups of biological organisms based on shared characteristics. Organisms are grouped into taxa (singular: taxon) and these groups are given a taxonomic rank; groups of a given rank can be aggregated to form a more inclusive group of higher rank, thus creating a taxonomic hierarchy. The principal ranks in modern use are domain, kingdom, phylum (division is sometimes used in botany in place of phylum), class, order, family, genus, and species.
Zoology
Zoology (zoʊˈɒlədʒi) is the scientific study of animals. Its studies include the structure, embryology, classification, habits, and distribution of all animals, both living and extinct, and how they interact with their ecosystems. Zoology is one of the primary branches of biology. The term is derived from Ancient Greek ζῷον, ('animal'), and λόγος, logos ('knowledge', 'study'). Although humans have always been interested in the natural history of the animals they saw around them, and used this knowledge to domesticate certain species, the formal study of zoology can be said to have originated with Aristotle.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.