Summary
Climate sensitivity is a measure of how much Earth's surface will cool or warm after a specified factor causes a change in its climate system, such as how much it will warm for a doubling in the atmospheric carbon dioxide () concentration. In technical terms, climate sensitivity is the average change in global mean surface temperature in response to a radiative forcing, which drives a difference between Earth's incoming and outgoing energy. Climate sensitivity is a key measure in climate science, and a focus area for climate scientists, who want to understand the ultimate consequences of anthropogenic global warming. The Earth's surface warms as a direct consequence of increased atmospheric , as well as increased concentrations of other greenhouse gases such as nitrous oxide and methane. The increasing temperatures have secondary effects on the climate system, such as an increase in atmospheric water vapour, which is itself also a greenhouse gas. Scientists do not know exactly how strong the climate feedbacks are and it is difficult to predict the precise amount of warming that will result from a given increase in greenhouse gas concentrations. If climate sensitivity turns out to be on the high side of scientific estimates, the Paris Agreement goal of limiting global warming to below will be difficult to achieve. The two primary types of climate sensitivity are the shorter-term "transient climate response", the increase in global average temperature that is expected to have occurred at a time when the atmospheric concentration has doubled, and "equilibrium climate sensitivity", the higher long-term increase in global average temperature expected to occur after the effects of a doubled concentration have had time to reach a steady state. Climate sensitivity is typically estimated in three ways: using direct observations of temperature and levels of greenhouse gases taken during the industrial age, using indirectly-estimated temperature and other measurements from the Earth's more distant past, and computer modelling the various aspects of the climate system with computers.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
ENV-410: Science of climate change
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
HUM-121(a): Global issues: climate A
Le cours présente les enjeux mondiaux liés au climat : système climatique et prévisions ; impacts sur écosystèmes et biodiversité; cadrage historique et débat public; objectifs et politiques climatiqu
HUM-121(b): Global issues: climate B
Le cours présente les enjeux mondiaux liés au climat: système climatique et prévisions ; impacts sur écosystèmes et biodiversité ; cadrage historique et débat public ; objectifs et politiques climatiq
Show more
Related lectures (40)
Radiative Forcing & Climate Sensitivity
Explores radiative forcing, climate sensitivity, and feedback mechanisms in climate change, emphasizing the role of various components like CO2 and methane.
Strain Gage Sensors
Explores strain gage sensors, discussing resistive and mechanical properties, response characteristics, and temperature effects.
Snow Physics and Hydrology
Covers snow physics, hydrology, modeling, and climate impact, emphasizing self-learning and practical understanding.
Show more
Related publications (223)

Industrial European regions at risk within the Fit for 55: How far implementing CBAM can mitigate?

Marc Vielle, Sigit Pria Perdana

The transition to a low-carbon economy can create new job opportunities but may cause job displacement in some sectors that heavily rely on fossil fuels. In order to gain a balanced appraisal in understanding the broader consequences of climate policies, t ...
2025

Comparison of selected surface level ERA5 variables against in‐situ observations in the continental Arctic

Julia Schmale, Jakob Boyd Pernov, Jules Gros-Daillon

In this study, data from 17 ground-based, continental Arctic observatories areused to evaluate the performance of the European Centre for Medium-RangeWeather Forecasts Reanalysis version 5 (ERA5) reanalysis model. Three aspectsare evaluated: (i) the overal ...
2024
Show more
Related concepts (15)
Climate change
In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is more rapid than previous changes, and is primarily caused by humans burning fossil fuels. Fossil fuel use, deforestation, and some agricultural and industrial practices increase greenhouse gases, notably carbon dioxide and methane.
Climate variability and change
Climate variability includes all the variations in the climate that last longer than individual weather events, whereas the term climate change only refers to those variations that persist for a longer period of time, typically decades or more. Climate change may refer to any time in Earth's history, but the term is now commonly used to describe contemporary climate change. Since the Industrial Revolution, the climate has increasingly been affected by human activities.
Climate change feedback
Climate change feedbacks are effects of global warming that amplify or diminish the effect of forces that initially cause the warming. Positive feedbacks enhance global warming while negative feedbacks weaken it. Feedbacks are important in the understanding of climate change because they play an important part in determining the sensitivity of the climate to warming forces. Climate forcings and feedbacks together determine how much and how fast the climate changes.
Show more