Concept

Cache-oblivious algorithm

Summary
In computing, a cache-oblivious algorithm (or cache-transcendent algorithm) is an algorithm designed to take advantage of a processor cache without having the size of the cache (or the length of the cache lines, etc.) as an explicit parameter. An optimal cache-oblivious algorithm is a cache-oblivious algorithm that uses the cache optimally (in an asymptotic sense, ignoring constant factors). Thus, a cache-oblivious algorithm is designed to perform well, without modification, on multiple machines with different cache sizes, or for a memory hierarchy with different levels of cache having different sizes. Cache-oblivious algorithms are contrasted with explicit loop tiling, which explicitly breaks a problem into blocks that are optimally sized for a given cache. Optimal cache-oblivious algorithms are known for matrix multiplication, matrix transposition, sorting, and several other problems. Some more general algorithms, such as Cooley–Tukey FFT, are optimally cache-oblivious under certain choices of parameters. As these algorithms are only optimal in an asymptotic sense (ignoring constant factors), further machine-specific tuning may be required to obtain nearly optimal performance in an absolute sense. The goal of cache-oblivious algorithms is to reduce the amount of such tuning that is required. Typically, a cache-oblivious algorithm works by a recursive divide-and-conquer algorithm, where the problem is divided into smaller and smaller subproblems. Eventually, one reaches a subproblem size that fits into the cache, regardless of the cache size. For example, an optimal cache-oblivious matrix multiplication is obtained by recursively dividing each matrix into four sub-matrices to be multiplied, multiplying the submatrices in a depth-first fashion. In tuning for a specific machine, one may use a hybrid algorithm which uses loop tiling tuned for the specific cache sizes at the bottom level but otherwise uses the cache-oblivious algorithm. The idea (and name) for cache-oblivious algorithms was conceived by Charles E.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.