The copper–chlorine cycle (Cu–Cl cycle) is a four-step thermochemical cycle for the production of hydrogen. The Cu–Cl cycle is a hybrid process that employs both thermochemical and electrolysis steps.
It has a maximum temperature requirement of about 530 degrees Celsius.
The Cu–Cl cycle involves four chemical reactions for water splitting, whose net reaction decomposes water into hydrogen and oxygen. All other chemicals are recycled. The Cu–Cl process can be linked with nuclear plants or other heat sources such as solar and industrial waste heat to potentially achieve higher efficiencies, lower environmental impact and lower costs of hydrogen production than any other conventional technology.
The Cu–Cl cycle is one of the prominent thermochemical cycles under development within the Generation IV International Forum (GIF). Through GIF, over a dozen countries around the world are developing the next generation of nuclear reactors for highly efficient production of both electricity and hydrogen.
The four reactions in the Cu–Cl cycle are listed as follows:
2 Cu + 2 HCl(g) → 2 CuCl(l) + H2(g) (430–475 °C)
2 CuCl2 + H2O(g) → Cu2OCl2 + 2 HCl(g) (400 °C)
2 Cu2OCl2 → 4 CuCl + O2(g) (500 °C)
2 CuCl → CuCl2(aq) + Cu (ambient-temperature electrolysis)
Net reaction: 2 H2O → 2 H2 + O2
Legend: (g)—gas; (l)—liquid; (aq)—aqueous solution; the balance of the species are in a solid phase.
Atomic Energy of Canada Limited has demonstrated experimentally a CuCl electrolyzer in which hydrogen is produced electrolytically at the cathode and Cu(I) is oxidized to Cu(II) at the anode, thereby combining above steps 1 and 4 to eliminate the intermediate production and subsequent transport of solid copper.
Approximately 50% of the heat required to drive this reaction can be captured from the reaction itself. The other heat can be provided by any suitable process. Recent research has focused on a cogeneration scheme using the waste heat from nuclear reactors, specifically the CANDU supercritical water reactor.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course aims at giving an overview on the synthesis of nanoparticles, with more focus on colloidal chemistry, and their implementation into devices for energy applications (batteries, solar cells,
The hybrid sulfur cycle (HyS) is a two-step water-splitting process intended to be used for hydrogen production. Based on sulfur oxidation and reduction, it is classified as a hybrid thermochemical cycle because it uses an electrochemical (instead of a thermochemical) reaction for one of the two steps. The remaining thermochemical step is shared with the sulfur-iodine cycle. The Hybrid sulphur cycle (HyS)was initially proposed and developed by Westinghouse Electric Corp. in the 1970s, so it is also known as the "Westinghouse" cycle.
For chemical reactions, the iron oxide cycle (Fe3O4/FeO) is the original two-step thermochemical cycle proposed for use for hydrogen production. It is based on the reduction and subsequent oxidation of iron ions, particularly the reduction and oxidation between Fe3+ and Fe2+. The ferrites, or iron oxide, begins in the form of a spinel and depending on the reaction conditions, dopant metals and support material forms either Wüstites or different spinels. The thermochemical two-step water splitting process uses two redox steps.
For chemical reactions, the zinc–zinc oxide cycle or Zn–ZnO cycle is a two step thermochemical cycle based on zinc and zinc oxide for hydrogen production with a typical efficiency around 40%. The thermochemical two-step water splitting process uses redox systems: Dissociation: ZnO → Zn + 1/2 O2 Hydrolysis: Zn + H2O → ZnO + H2 For the first endothermic step concentrating solar power is used in which zinc oxide is thermally dissociated at into zinc and oxygen.
Metal hydrides are an interesting group of chemical compounds, able to store hydrogen in a reversible, compact and safe manner. Among them, A(2)B(7)-type intermetallic alloys based on La-Mg-Ni have attracted particular attention due to their high electroch ...
Electrochemical conversion of CO2 to fuels and valuable products is one pathway to reduce CO2 emissions. Electrolyzers using gas diffusion electrodes (GDEs) show much higher current densities than aqueous phase electrolyzers, yet models for multi-physical ...
2023
Solar energy provides an unprecedented potential as a renewable and sustainable energy resource and will substantially reshape our future energy economy. It is not only useful in producing electricity but also (high-temperature) heat and fuel, both require ...