Smart antennas (also known as adaptive array antennas, digital antenna arrays, multiple antennas and, recently, MIMO) are antenna arrays with smart signal processing algorithms used to identify spatial signal signatures such as the direction of arrival (DOA) of the signal, and use them to calculate beamforming vectors which are used to track and locate the antenna beam on the mobile/target. Smart antennas should not be confused with reconfigurable antennas, which have similar capabilities but are single element antennas and not antenna arrays.
Smart antenna techniques are used notably in acoustic signal processing, track and scan radar, radio astronomy and radio telescopes, and mostly in cellular systems like W-CDMA, UMTS, and LTE and 5G-NR.
Smart antennas have many functions: DOA estimation, beamforming, interference nulling, and constant modulus preservation.
The smart antenna system estimates the direction of arrival of the signal, using techniques such as MUSIC (MUltiple SIgnal Classification), estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithms, Matrix Pencil method or one of their derivatives. They involve finding a spatial spectrum of the antenna/sensor array, and calculating the DOA from the peaks of this spectrum. These calculations are computationally intensive.
Matrix Pencil is very efficient in case of real time systems, and under the correlated sources.
Beamforming is the method used to create the radiation pattern of the antenna array by adding constructively the phases of the signals in the direction of the targets/mobiles desired, and nulling the pattern of the targets/mobiles that are undesired/interfering targets.
This can be done with a simple Finite Impulse Response (FIR) tapped delay line filter. The weights of the FIR filter may also be changed adaptively, and used to provide optimal beamforming, in the sense that it reduces the Minimum Mean Square Error between the desired and actual beampattern formed. Typical algorithms are the steepest descent, and Least Mean Squares algorithms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Students extend their knowledge on wireless communication systems to spread-spectrum communication and to multi-antenna systems. They also learn about the basic information theoretic concepts, about c
Les antennes sont utilisées dans une multitude d'applications de communications et de détection, demandant des fréquences et propriétés d'antennes très différentes. Ce cours décrit la théorie de base
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
In radio, multiple-input and multiple-output (MIMO) (ˈmaɪmoʊ,_ˈmiːmoʊ) is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n (Wi-Fi 4), IEEE 802.11ac (Wi-Fi 5), HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.
An antenna array (or array antenna) is a set of multiple connected antennas which work together as a single antenna, to transmit or receive radio waves. The individual antennas (called elements) are usually connected to a single receiver or transmitter by feedlines that feed the power to the elements in a specific phase relationship. The radio waves radiated by each individual antenna combine and superpose, adding together (interfering constructively) to enhance the power radiated in desired directions, and cancelling (interfering destructively) to reduce the power radiated in other directions.
Beamforming or spatial filtering is a signal processing technique used in sensor arrays for directional signal transmission or reception. This is achieved by combining elements in an antenna array in such a way that signals at particular angles experience constructive interference while others experience destructive interference. Beamforming can be used at both the transmitting and receiving ends in order to achieve spatial selectivity. The improvement compared with omnidirectional reception/transmission is known as the directivity of the array.
Advanced antenna system (AAS) is a viable option for 5G millimeter-wave (mmWave) applications. AAS single element is favored to be dual-polarized, wideband, high gain, and compact in order to be utilized for 5G antenna arrays. In this paper, a low complexi ...
In this paper, a novel feeding method for shorted annular ring (SAR) antennas is presented. SAR antennas can be designed to not excite surface waves and hence have desirable properties for many applications. The traditional method of feeding a SAR is throu ...
IEEE2023
,
This code is used for developing the project entitled “Study on conformal antennas, proof of concept prototype for a UAV”, from the aspects of theory, design, and implementation. This code aims to speed up the investigation of an arbitrary phased array ant ...