Concept

Bareiss algorithm

In mathematics, the Bareiss algorithm, named after Erwin Bareiss, is an algorithm to calculate the determinant or the echelon form of a matrix with integer entries using only integer arithmetic; any divisions that are performed are guaranteed to be exact (there is no remainder). The method can also be used to compute the determinant of matrices with (approximated) real entries, avoiding the introduction of any round-off errors beyond those already present in the input. The general Bareiss algorithm is distinct from the Bareiss algorithm for Toeplitz matrices. In some Spanish-speaking countries, this algorithm is also known as Bareiss-Montante, because of René Mario Montante Pardo, a professor of the Universidad Autónoma de Nuevo León, Mexico, who popularized the method among his students. Determinant definition has only multiplication, addition and subtraction operations. Obviously the determinant is integer if all matrix entries are integer. However actual computation of the determinant using the definition or Leibniz formula is impractical, as it requires O(n!) operations. Gaussian elimination has O(n3) complexity, but introduces division, which results in round-off errors when implemented using floating point numbers. Round-off errors can be avoided if all the numbers are kept as integer fractions instead of floating point. But then the size of each element grows in size exponentially with the number of rows. Bareiss brings up a question of performing an integer-preserving elimination while keeping the magnitudes of the intermediate coefficients reasonably small. Two algorithms are suggested: Division-free algorithm — performs matrix reduction to triangular form without any division operation. Fraction-free algorithm — uses division to keep the intermediate entries smaller, but due to the Sylvester's Identity the transformation is still integer-preserving (the division has zero remainder). For completeness Bareiss also suggests fraction-producing multiplication-free elimination methods.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (5)
Vector Equations: Linear Combinations
Covers echelon matrices, vector equations, linear combinations, and vector spans in R^n.
Replica Method: Computation and Heuristics
Covers the replica method for computing expectations and the heuristic evaluation of expressions.
Quantum Information Principles
Covers the mathematical principles of quantum physics, including Hilbert spaces and quantum bits.
Show more
Related publications (6)

On maximum volume submatrices and cross approximation for symmetric semidefinite and diagonally dominant matrices

Daniel Kressner, Stefano Massei, Alice Cortinovis

The problem of finding a k x k submatrix of maximum volume of a matrix A is of interest in a variety of applications. For example, it yields a quasi-best low-rank approximation constructed from the rows and columns of A. We show that such a submatrix can a ...
ELSEVIER SCIENCE INC2020

MATHICSE Technical Report : On maximum volume submatrices and cross approximation for symmetric semidefinite and diagonally dominant matrices

Daniel Kressner, Stefano Massei, Alice Cortinovis

The problem of finding a k×kk\times k submatrix of maximum volume of a matrix A is of interest in a variety of applications. For example, it yields a quasi-best low-rank approximation constructed from the rows and columns of A. We show that such a submatrix ...
MATHICSE2019

On multivariate trace inequalities of Sutter, Berta, and Tomamichel

Marius Christopher Lemm

We consider a family of multivariate trace inequalities recently derived by Sutter, Berta, and Tomamichel. These inequalities generalize the Golden-Thompson inequality and Lieb’s triple matrix inequality to an arbitrary number of matrices in a way that fea ...
2018
Show more
Related people (1)
Related concepts (2)
Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
Computational complexity
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.