In statistics, restricted randomization occurs in the design of experiments and in particular in the context of randomized experiments and randomized controlled trials. Restricted randomization allows intuitively poor allocations of treatments to experimental units to be avoided, while retaining the theoretical benefits of randomization. For example, in a clinical trial of a new proposed treatment of obesity compared to a control, an experimenter would want to avoid outcomes of the randomization in which the new treatment was allocated only to the heaviest patients.
The concept was introduced by Frank Yates (1948) and William J. Youden (1972) "as a way of avoiding bad spatial patterns of treatments in designed experiments."
Consider a batch process that uses 7 monitor wafers in each run. The plan further calls for measuring a response variable on each wafer at each of 9 sites. The organization of the sampling plan has a hierarchical or nested structure: the batch run is the topmost level, the second level is an individual wafer, and the third level is the site on the wafer.
The total amount of data generated per batch run will be 7 · 9 = 63 observations. One approach to analyzing these data would be to compute the mean of all these points as well as their standard deviation and use those results as responses for each run.
Analyzing the data as suggested above is not absolutely incorrect, but doing so loses information that one might otherwise obtain. For example, site 1 on wafer 1 is physically different from site 1 on wafer 2 or on any other wafer. The same is true for any of the sites on any of the wafers. Similarly, wafer 1 in run 1 is physically different from wafer 1 in run 2, and so on. To describe this situation one says that sites are nested within wafers while wafers are nested within runs.
As a consequence of this nesting, there are restrictions on the randomization that can occur in the experiment. This kind of restricted randomization always produces nested sources of variation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides an introduction to experimental statistics, including use of population statistics to characterize experimental results, use of comparison statistics and hypothesis testing to eva
In statistics, a random effects model, also called a variance components model, is a statistical model where the model parameters are random variables. It is a kind of hierarchical linear model, which assumes that the data being analysed are drawn from a hierarchy of different populations whose differences relate to that hierarchy. A random effects model is a special case of a mixed model.
Condom evidence can be analysed using several analytical techniques, such as FTIR, MALDI-MS or DART-TOF-MS, but the only one that was used on real samples for transfer and persistence studies in the context of sexual assault or rape cases was Py-GC/MS. How ...
2020
, ,
While there is a growing use of complex facade designs in contemporary architecture worldwide and across Europe, little is known about the perceptual effects of these facades and the resulting daylight patterns on occupants, or about how such effects might ...
TAYLOR & FRANCIS INC2022
, , ,
In this study, the anti-depressant Venlafaxine, a new emerging contaminant of interest for the Swiss legislation, was subjected to systematic degradation. In order to develop an efficient framework for the treatment of emerging contaminants at industrial s ...