An agricultural drainage system is a system by which water is drained on or in the soil to enhance agricultural production of crops. It may involve any combination of stormwater control, erosion control, and watertable control.
While there are more than two types of drainage systems employed in agriculture, there are two main types: (1) surface drainage and (2) sub-surface drainage.
Figure 1 classifies the various types of drainage systems. It shows the field (or internal) and the main (or external) systems. The function of the field drainage system is to control the water table, whereas the function of the main drainage system is to collect, transport, and dispose of the water through an outfall or outlet. In some instances one makes an additional distinction between collector and main drainage systems.
Field drainage systems are differentiated in surface and subsurface field drainage systems.
Sometimes (e.g., in irrigated, submerged rice fields), a form of temporary drainage is required whereby the drainage system is allowed to function only on certain occasions (e.g., during the harvest period). If allowed to function continuously, excessive quantities of water would be lost. Such a system is therefore called a checked, or controlled, drainage system.
More usually, however, drainage systems are meant to function as regularly as possible to prevent undue waterlogging at any given time and it is this regular drainage system that is most often employed. In agricultural literature, this is sometimes also called a "relief drainage system".
The regular surface drainage systems, which start functioning as soon as there is an excess of rainfall or irrigation applied, operate entirely by gravity. They consist of reshaped or reformed land surfaces and can be divided into:
Bedded systems, used in flat lands for crops other than rice;
Graded systems, used in sloping land for crops other than rice.
The bedded and graded systems may have ridges and furrows.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In geotechnical engineering, watertable control is the practice of controlling the height of the water table by drainage. Its main applications are in agricultural land (to improve the crop yield using agricultural drainage systems) and in cities to manage the extensive underground infrastructure that includes the foundations of large buildings, underground transit systems, and extensive utilities (water supply networks, sewerage, storm drains, and underground electrical grids).
Drainage research is the study of agricultural drainage systems and their effects to arrive at optimal system design. Agricultural land drainage has agricultural, environmental, hydrological, engineering, economical, social and socio-political aspects (Figure 1). All these aspects can be subject of drainage research. The aim (objective, target) of agricultural land drainage is the optimized agricultural production related to: reclamation of agricultural land conservation of agricultural land optimization of crop yield crop diversification cropping intensification optimization of farm operations.
A drainage equation is an equation describing the relation between depth and spacing of parallel subsurface drains, depth of the watertable, depth and hydraulic conductivity of the soils. It is used in drainage design. A well known steady-state drainage equation is the Hooghoudt drain spacing equation. Its original publication is in Dutch. The equation was introduced in the USA by van Schilfgaarde. Hooghoudt's equation can be written as:.
The course aims at teaching the fundamentals of both irrigation and drainage techniques with particular attention to the soil water balance and related management, the materials, the construction meth
Pour acquérir une connaissance approfondie de l'espace et des travaux souterrains, y compris la planification, la gestion, les techniques de construction, l'évaluation de risques, et les considération
Sustainable freshwater and urban drainage system are considered.
For fresh water, the capture, reservoir and net are discussed.
For the drainage, hydrology as well as the individual conduit and manh
Watertable fluctuations are a characteristic feature of coastal unconfined aquifers. They interact with the vadose zone creating a dynamic effective porosity, for which a new (empirical) expression is proposed based on a dimensionless parameter related to ...
The occurrence of macropores in salt marsh sediments is a natural and ubiquitous phenomenon. Although they are widely assumed to affect pore-water flow in salt marshes significantly, the mechanisms involved and their extent are not well understood. We cond ...
This master thesis explores the role of Biochar production and Peatlands renaturation as Nature-based solutions to reach Swiss Net Zero by 2050, by analyzing the historical, socio-economic context, and the scientific phenomena behind these topics. It aimed ...