Summary
Envenomation is the process by which venom is injected by the bite or sting of a venomous animal. Many kinds of animals, including mammals (e.g., the northern short-tailed shrew, Blarina brevicauda), reptiles (e.g., the king cobra), spiders (e.g., black widows), insects (e.g., wasps), and fish (e.g., stone fish) employ venom for hunting and for self-defense. In particular, snakebite envenoming is considered a neglected tropical disease resulting in >100,000 deaths and maiming >400,000 people per year. Some venoms are applied externally, especially to sensitive tissues such as the eyes, but most venoms are administered by piercing the skin of the victim. Venom in the saliva of the Gila monster and some other reptiles enters prey through bites of grooved teeth. More commonly animals have specialized organs such as hollow teeth (fangs) and tubular stingers that penetrate the prey's skin, whereupon muscles attached to the attacker's venom reservoir squirt venom deep within the victim's body tissue. For example, the fangs of venomous snakes are connected to a venom gland by means of a duct. Death may occur as a result of bites or stings. The rate of envenoming is described as the likelihood of venom successfully entering a system upon bite or sting. SnakebiteSnakes administer venom to their target by piercing the target's skin with specialized organs known as fangs. Snakebites can be broken into four stages; strike launch, fang erection, fang penetration, and fang withdrawal. Snakes have a venom gland connected to a duct and subsequent fangs. The fangs have hollow tubes with grooved sides that allow venom to flow within them. During snake bites, the fangs penetrate the skin of the target and the fang sheath, a soft tissue organ surrounding the fangs, is retracted. The fang sheath retraction causes an increase in internal pressures. This pressure differential initiates venom flow in the venom delivery system. Larger snakes have been shown to administer larger quantities of venom during strikes when compared to smaller snakes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (3)
Rattlesnake
Rattlesnakes are venomous snakes that form the genera Crotalus and Sistrurus of the subfamily Crotalinae (the pit vipers). All rattlesnakes are vipers. Rattlesnakes are predators that live in a wide array of habitats, hunting small animals such as birds and rodents. Rattlesnakes receive their name from the rattle located at the end of their tails, which makes a loud rattling noise when vibrated that deters predators. Rattlesnakes are the leading contributor to snakebite injuries in North America, but rarely bite unless provoked or threatened; if treated promptly, the bites are seldom fatal.
Snakebite
A snakebite is an injury caused by the bite of a snake, especially a venomous snake. A common sign of a bite from a venomous snake is the presence of two puncture wounds from the animal's fangs. Sometimes venom injection from the bite may occur. This may result in redness, swelling, and severe pain at the area, which may take up to an hour to appear. Vomiting, blurred vision, tingling of the limbs, and sweating may result. Most bites are on the hands, arms, or legs. Fear following a bite is common with symptoms of a racing heart and feeling faint.
Venom
Venom or zootoxin is a type of toxin produced by an animal that is actively delivered through a wound by means of a bite, sting, or similar action. The toxin is delivered through a specially evolved venom apparatus, such as fangs or a stinger, in a process called envenomation. Venom is often distinguished from poison, which is a toxin that is passively delivered by being ingested, inhaled, or absorbed through the skin, and toxungen, which is actively transferred to the external surface of another animal via a physical delivery mechanism.