Cryptographically secure pseudorandom number generator
Summary
A cryptographically secure pseudorandom number generator (CSPRNG) or cryptographic pseudorandom number generator (CPRNG) is a pseudorandom number generator (PRNG) with properties that make it suitable for use in cryptography. It is also loosely known as a cryptographic random number generator (CRNG).
Most cryptographic applications require random numbers, for example:
key generation
nonces
salts in certain signature schemes, including ECDSA, RSASSA-PSS
The "quality" of the randomness required for these applications varies.
For example, creating a nonce in some protocols needs only uniqueness.
On the other hand, the generation of a master key requires a higher quality, such as more entropy. And in the case of one-time pads, the information-theoretic guarantee of perfect secrecy only holds if the key material comes from a true random source with high entropy, and thus any kind of pseudorandom number generator is insufficient.
Ideally, the generation of random numbers in CSPRNGs uses entropy obtained from a high-quality source, generally the operating system's randomness API. However, unexpected correlations have been found in several such ostensibly independent processes. From an information-theoretic point of view, the amount of randomness, the entropy that can be generated, is equal to the entropy provided by the system. But sometimes, in practical situations, more random numbers are needed than there is entropy available. Also, the processes to extract randomness from a running system are slow in actual practice. In such instances, a CSPRNG can sometimes be used. A CSPRNG can "stretch" the available entropy over more bits.
A cryptographically secure pseudorandom number generator (CSPRNG) or cryptographic pseudorandom number generator (CPRNG) is a pseudorandom number generator (PRNG) with properties that make it suitable for use in cryptography. It is also loosely known as a cryptographic random number generator (CRNG), which can be compared to "true" vs. pseudo-random numbers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
This is an introductory course to computer security and privacy. Its goal is to provide students with means to reason about security and privacy problems, and provide them with tools to confront them.
This advanced course will provide students with the knowledge to tackle the design of privacy-preserving ICT systems. Students will learn about existing technologies to prect privacy, and how to evalu
In common usage, randomness is the apparent or actual lack of definite pattern or predictability in information. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual random events are, by definition, unpredictable, but if the probability distribution is known, the frequency of different outcomes over repeated events (or "trials") is predictable. For example, when throwing two dice, the outcome of any particular roll is unpredictable, but a sum of 7 will tend to occur twice as often as 4.
A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG), is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers. The PRNG-generated sequence is not truly random, because it is completely determined by an initial value, called the PRNG's seed (which may include truly random values).
In computing, a linear-feedback shift register (LFSR) is a shift register whose input bit is a linear function of its previous state. The most commonly used linear function of single bits is exclusive-or (XOR). Thus, an LFSR is most often a shift register whose input bit is driven by the XOR of some bits of the overall shift register value. The initial value of the LFSR is called the seed, and because the operation of the register is deterministic, the stream of values produced by the register is completely determined by its current (or previous) state.
Billions of people now have conversations daily over the Internet. A large portion of this communication takes place via secure messaging protocols that offer "end-to-end encryption'" guarantees and resilience to compromise like the widely-used Double Ratc ...
EPFL2024
Current cryptographic solutions will become obsolete with the arrival of large-scale universal quantum computers. As a result, the National Institute of Standards and Technology supervises a post-quantum standardization process which involves evaluating ca ...
Modern digital connectivity has necessitated the creation of robust methods for securely storing and transferring data. At the heart of all security infrastructure is the random number generator (RNG). While random numbers find use in a variety of applicat ...