Concept

Linear probing

Summary
Linear probing is a scheme in computer programming for resolving collisions in hash tables, data structures for maintaining a collection of key–value pairs and looking up the value associated with a given key. It was invented in 1954 by Gene Amdahl, Elaine M. McGraw, and Arthur Samuel and first analyzed in 1963 by Donald Knuth. Along with quadratic probing and double hashing, linear probing is a form of open addressing. In these schemes, each cell of a hash table stores a single key–value pair. When the hash function causes a collision by mapping a new key to a cell of the hash table that is already occupied by another key, linear probing searches the table for the closest following free location and inserts the new key there. Lookups are performed in the same way, by searching the table sequentially starting at the position given by the hash function, until finding a cell with a matching key or an empty cell. As write, "Hash tables are the most commonly used nontrivial data structures, and the most popular implementation on standard hardware uses linear probing, which is both fast and simple." Linear probing can provide high performance because of its good locality of reference, but is more sensitive to the quality of its hash function than some other collision resolution schemes. It takes constant expected time per search, insertion, or deletion when implemented using a random hash function, a 5-independent hash function, or tabulation hashing. Good results can also be achieved in practice with other hash functions such as MurmurHash. Linear probing is a component of open addressing schemes for using a hash table to solve the dictionary problem. In the dictionary problem, a data structure should maintain a collection of key–value pairs subject to operations that insert or delete pairs from the collection or that search for the value associated with a given key. In open addressing solutions to this problem, the data structure is an array T (the hash table) whose cells T[i] (when nonempty) each store a single key–value pair.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.