Summary
A crucible is a ceramic or metal container in which metals or other substances may be melted or subjected to very high temperatures. Although crucibles have historically tended to be made out of clay, they can be made from any material that withstands temperatures high enough to melt or otherwise alter its contents. The form of the crucible has varied through time, with designs reflecting the process for which they are used, as well as regional variation. The earliest crucible forms derive from the sixth/fifth millennium B.C. in Eastern Europe and Iran. Crucibles used for copper smelting were generally wide shallow vessels made from clay that lacks refractory properties which is similar to the types of clay used in other ceramics of the time. During the Chalcolithic period, crucibles were heated from the top by using blowpipes. Ceramic crucibles from this time had slight modifications to their designs such as handles, knobs or pouring spouts allowing them to be more easily handled and poured. Early examples of this practice can be seen in Feinan, Jordan. These crucibles have added handles to allow for better manipulation, however, due to the poor preservation of the crucibles there is no evidence of a pouring spout. The main purpose of the crucible during this period was to keep the ore in the area where the heat was concentrated to separate it from impurities before shaping. A crucible furnace dating to 2300–1900 BC for bronze casting has been found at a religious precinct of Kerma. The use of crucibles in the Iron Age remains very similar to that of the Bronze Age with copper and tin smelting being used to produce bronze. The Iron Age crucible designs remain the same as the Bronze Age. The Roman period shows technical innovations, with crucibles for new methods used to produce new alloys. The smelting and melting process also changed with both the heating technique and the crucible design. The crucible changed into rounded or pointed bottom vessels with a more conical shape; these were heated from below, unlike prehistoric types which were irregular in shape and were heated from above.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (2)
Aluminium Production: Processes and Environmental Impact
Explores aluminium production processes, environmental impact, inert anodes, recycling, and powder metallurgy applications.