Concept

2 41 polytope

Summary
DISPLAYTITLE:2 41 polytope In 8-dimensional geometry, the 241 is a uniform 8-polytope, constructed within the symmetry of the E8 group. Its Coxeter symbol is 241, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequences. The rectified 241 is constructed by points at the mid-edges of the 241. The birectified 241 is constructed by points at the triangle face centers of the 241, and is the same as the rectified 142. These polytopes are part of a family of 255 (28 − 1) convex uniform polytopes in 8-dimensions, made of uniform polytope facets, defined by all permutations of rings in this Coxeter-Dynkin diagram: . The 241 is composed of 17,520 facets (240 231 polytopes and 17,280 7-simplices), 144,960 6-faces (6,720 221 polytopes and 138,240 6-simplices), 544,320 5-faces (60,480 211 and 483,840 5-simplices), 1,209,600 4-faces (4-simplices), 1,209,600 cells (tetrahedra), 483,840 faces (triangles), 69,120 edges, and 2160 vertices. Its vertex figure is a 7-demicube. This polytope is a facet in the uniform tessellation, 251 with Coxeter-Dynkin diagram: E. L. Elte named it V2160 (for its 2160 vertices) in his 1912 listing of semiregular polytopes. It is named 241 by Coxeter for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence. Diacositetracont-myriaheptachiliadiacosioctaconta-zetton (Acronym Bay) - 240-17280 facetted polyzetton (Jonathan Bowers) The 2160 vertices can be defined as follows: 16 permutations of (±4,0,0,0,0,0,0,0) of (8-orthoplex) 1120 permutations of (±2,±2,±2,±2,0,0,0,0) of (trirectified 8-orthoplex) 1024 permutations of (±3,±1,±1,±1,±1,±1,±1,±1) with an odd number of minus-signs It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram: . Removing the node on the short branch leaves the 7-simplex: . There are 17280 of these facets Removing the node on the end of the 4-length branch leaves the 231, .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.