Concept

F-coalgèbre

In mathematics, specifically in , an -coalgebra is a structure defined according to a functor , with specific properties as defined below. For both algebras and coalgebras, a functor is a convenient and general way of organizing a signature. This has applications in computer science: examples of coalgebras include lazy, infinite data structures, such as streams, and also transition systems. coalgebras are to -algebras. Just as the class of all algebras for a given signature and equational theory form a variety, so does the class of all -coalgebras satisfying a given equational theory form a covariety, where the signature is given by . Let be an endofunctor on a category . An -coalgebra is an object of together with a morphism of , usually written as . An -coalgebra homomorphism from to another -coalgebra is a morphism in such that Thus the -coalgebras for a given functor F constitute a category. Consider the endofunctor that sends a set to its disjoint union with the singleton set . A coalgebra of this endofunctor is given by , where is the so-called conatural numbers, consisting of the nonnegative integers and also infinity, and the function is given by , for and . In fact, is the terminal coalgebra of this endofunctor. More generally, fix some set , and consider the functor that sends to . Then an -coalgebra is a finite or infinite stream over the alphabet where is the set of states and is the state-transition function. Applying the state-transition function to a state may yield two possible results: either an element of together with the next state of the stream, or the element of the singleton set as a separate "final state" indicating that there are no more values in the stream. In many practical applications, the state-transition function of such a coalgebraic object may be of the form , which readily factorizes into a collection of "selectors", "observers", "methods" . Special cases of practical interest include observers yielding attribute values, and mutator methods of the form taking additional parameters and yielding states.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.