The Lucens reactor was a 6 MW experimental nuclear power reactor built next to Lucens, Vaud, Switzerland. After its connection to the electrical grid on 29 January 1968, the reactor only operated for a few months before it suffered an accident on 21 January 1969. The cause was a corrosion-induced loss of heat dispersal leading to the destruction of a pressure tube which caused an adjacent pressure tube to fail, and partial meltdown of the core, resulting in radioactive contamination of the cavern.
In 1962 the construction of a Swiss-designed pilot nuclear power plant began. The heavy-water moderated, carbon dioxide gas-cooled reactor was built in a cavern. It produced 28 MW of heat, which was used to generate 6 MW of electricity, and it became critical 29 December 1966. It was fueled by 0.96% enriched uranium alloyed with chromium cased in magnesium alloy (magnesium with 0.6% zirconium) inserted into a graphite matrix. Carbon dioxide gas was pumped into the top of the channels at 6.28 MPa and 223 °C and exited the channels at a pressure of 5.79 MPa and at a temperature of 378 °C.
It was intended to operate until the end of 1969, but during a startup on 21 January 1969, it suffered a loss-of-coolant accident, leading to a partial core meltdown and the radioactive contamination of the cavern, which was then sealed. Using the criteria of the International Nuclear Event Scale, introduced in 1990 by the International Atomic Energy Agency, the event has been assessed as a Level 4 "Accident with local consequences".
The accident was caused by water condensation forming on some magnesium alloy fuel element components during shutdown and corroding them. These corrosion products accumulated in some fuel channels. One of the vertical fuel channels was sufficiently blocked by it to impede the flow of carbon dioxide coolant, causing the magnesium alloy cladding to melt and further block the channel. The increase in temperature and exposure of the uranium metal fuel to the coolant eventually caused the fuel to catch fire in the carbon dioxide coolant atmosphere.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
Nuclear decommissioning is the process leading to the irreversible complete or partial closure of a nuclear facility, usually a nuclear reactor, with the ultimate aim at termination of the operating licence. The process usually runs according to a decommissioning plan, including the whole or partial dismantling and decontamination of the facility, ideally resulting in restoration of the environment up to greenfield status. The decommissioning plan is fulfilled when the approved end state of the facility has been reached.
A nuclear power plant (NPP) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces electricity. , the International Atomic Energy Agency reported there were 412 nuclear power reactors in operation in 31 countries around the world, and 57 nuclear power reactors under construction.
Tungsten materials are candidates for plasma-facing components for the International Thermonuclear Experimental Reactor and the DEMOnstration power plant because of their superior thermophysical properties. Because these materials are not common structural ...
This study aims at better understanding what limits the biological phosphate removal at Uster’s wastewater treatment plant (WWTP). Two hypotheses were proposed to explain the limited biological phosphate removal observed at Uster’s WWTP: (i) A heterogeneou ...
Recent LOCA tests with high burnup fuel at the OECD Halden Reactor Project and at Studsvik demonstrated the susceptibility of the fuel to fragment to small pieces, to relocate and possibly cause a hot-spot effect and to be dispersed in the event of claddin ...