The Breit equation is a relativistic wave equation derived by Gregory Breit in 1929 based on the Dirac equation, which formally describes two or more massive spin-1/2 particles (electrons, for example) interacting electromagnetically to the first order in perturbation theory. It accounts for magnetic interactions and retardation effects to the order of 1/c2. When other quantum electrodynamic effects are negligible, this equation has been shown to give results in good agreement with experiment. It was originally derived from the Darwin Lagrangian but later vindicated by the Wheeler–Feynman absorber theory and eventually quantum electrodynamics. The Breit equation is not only an approximation in terms of quantum mechanics, but also in terms of relativity theory as it is not completely invariant with respect to the Lorentz transformation. Just as does the Dirac equation, it treats nuclei as point sources of an external field for the particles it describes. For N particles, the Breit equation has the form (rij is the distance between particle i and j): where is the Dirac Hamiltonian (see Dirac equation) for particle i at position ri and φ(ri) is the scalar potential at that position; qi is the charge of the particle, thus for electrons qi = −e. The one-electron Dirac Hamiltonians of the particles, along with their instantaneous Coulomb interactions 1/rij, form the Dirac-Coulomb operator. To this, Breit added the operator (now known as the (frequency-independent) Breit operator): where the Dirac matrices for electron i: a(i) = [αx(i), αy(i), αz(i)]. The two terms in the Breit operator account for retardation effects to the first order. The wave function Ψ in the Breit equation is a spinor with 4N elements, since each electron is described by a Dirac bispinor with 4 elements as in the Dirac equation, and the total wave function is the tensor product of these.
Ivano Tavernelli, Basile Curchod, Thomas James Penfold
Jian Wang, Matthias Finger, Lesya Shchutska, Qian Wang, Matthias Wolf, Varun Sharma, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Roberto Castello, Alessandro Degano, Zhirui Xu, João Miguel das Neves Duarte, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Thomas Muller, Ho Ling Li, Giuseppe Codispoti, Paul Turner, Wei Sun, Raffaele Tito D'Agnolo, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Vineet Kumar, Vladimir Petrov, Francesco Fiori, Quentin Python, Meng Xiao, Hao Liu, Sourav Sen, Viktor Khristenko, Marco Trovato, Gurpreet Singh, Kai Yi, Rajat Gupta, Shuai Liu, Aram Avetisyan, Charles Dietz, Alexandre Aubin, Michal Simon, Matteo Marone, Giovanni Bianchi