Sickness behavior is a coordinated set of adaptive behavioral changes that develop in ill individuals during the course of an infection.
They usually, but not always, accompany fever and aid survival.
Such illness responses include lethargy, depression, anxiety, malaise, loss of appetite, sleepiness, hyperalgesia, reduction in grooming and failure to concentrate.
Sickness behavior is a motivational state that reorganizes the organism's priorities to cope with infectious pathogens.
It has been suggested as relevant to understanding depression, and some aspects of the suffering that occurs in cancer.
Sick animals have long been recognized by farmers as having different behavior. Initially it was thought that this was due to physical weakness that resulted from diverting energy to the body processes needed to fight infection. However, in the 1960s, it was shown that animals produced a blood-carried factor X that acted upon the brain to cause sickness behavior. In 1987, Benjamin L. Hart brought together a variety of research findings that argued for them being survival adaptations that if prevented would disadvantage an animal's ability to fight infection. In the 1980s, the blood-borne factor was shown to be proinflammatory cytokines produced by activated leukocytes in the immune system in response to lipopolysaccharides (a cell wall component of Gram-negative bacteria). These cytokines acted by various humoral and nerve routes upon the hypothalamus and other areas of the brain. Further research showed that the brain can also learn to control the various components of sickness behavior independently of immune activation..
In 2015, Shakhar and Shakhar suggested instead that sickness behavior developed primarily because it protected the kin of infected animals from transmissible diseases. According to this theory, termed the Eyam hypothesis, after the English Parish of Eyam, sickness behavior protects the social group of infected individuals by limiting their direct contacts, preventing them from contaminating the environment, and broadcasting their health status.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Evolutionary medicine or Darwinian medicine is the application of modern evolutionary theory to understanding health and disease. Modern biomedical research and practice have focused on the molecular and physiological mechanisms underlying health and disease, while evolutionary medicine focuses on the question of why evolution has shaped these mechanisms in ways that may leave us susceptible to disease. The evolutionary approach has driven important advances in the understanding of cancer, autoimmune disease, and anatomy.
Fatigue describes a state of tiredness (which is not sleepiness) or exhaustion. In general usage, fatigue often follows prolonged physical or mental activity. When fatigue occurs independently of physical or mental exertion, or does not resolve after rest or sleep, it may have other causes, such as a medical condition. Fatigue (in a medical context) is complex and its cause is often unknown. Fatigue is associated with a wide variety of conditions including autoimmune disease, organ failure, chronic pain conditions, mood disorders, heart disease, infectious diseases and post-infectious disease states.
Tumor necrosis factor (TNF, cachexin, or cachectin; formerly known as tumor necrosis factor alpha or TNF-α) is an adipokine and a cytokine. TNF is a member of the TNF superfamily, which consists of various transmembrane proteins with a homologous TNF domain. As an adipokine, TNF promotes insulin resistance, and is associated with obesity-induced type 2 diabetes. As a cytokine, TNF is used by the immune system for cell signaling. If macrophages (certain white blood cells) detect an infection, they release TNF to alert other immune system cells as part of an inflammatory response.
Astrocytes play an important role in nervous system homeostasis. In particular, they contribute to the regulation of local energy metabolism and to oxidative stress defence. In previous experiments, we showed that long-term treatment with interleukin 1alph ...
Therapeutic effects of Interferon-α (IFN-α are known to be associated with CNS toxicity in humans, and in particular with depression symptoms. Animal models of IFN-α-induced depression (sickness behaviour) have been developed in rodents using various prepa ...
Elsevier2014
Rodent autonomous parvoviruses (PVs) are endowed with oncotropic properties and represent virotherapeutics with inherent oncolytic features. This work aimed to evaluate the capacity of Minute Virus of Mice (MVMp) to act as an adjuvant stimulating a mouse g ...