Concept

Rare disease assumption

The rare disease assumption is a mathematical assumption in epidemiologic case-control studies where the hypothesis tests the association between an exposure and a disease. It is assumed that, if the prevalence of the disease is low, then the odds ratio (OR) approaches the relative risk (RR). The idea was first demonstrated by Jerome Cornfield. Case control studies are relatively inexpensive and less time-consuming than cohort studies. Since case control studies don't track patients over time, they can't establish relative risk. The case control study can, however, calculate the exposure-odds ratio, which, mathematically, is supposed to approach the relative risk as prevalence falls. Sander Greenland showed that if the prevalence is 10% or less, the disease can be considered rare enough to allow the rare disease assumption. Unfortunately, the magnitude of discrepancy between the odds ratio and the relative risk is dependent not only on the prevalence, but also, to a great degree, on two other factors. Thus, the reliance on the rare disease assumption when discussing odds ratios as risk should be explicitly stated and discussed. The rare disease assumption can be demonstrated mathematically using the definitions for relative risk and odds ratio. With regards to the table above, and As prevalence decreases, the number of positive cases decreases. As approaches 0, then and , individually, also approaches 0. In other words, as approaches 0, The following example illustrates one of the problems, which occurs when the effects are large because the disease is common in the exposed or unexposed group. Consider the following contingency table. and While the prevalence is only 9% (9/100), the odds ratio (OR) is equal to 11.3 and the relative risk (RR) is equal to 7.2. Despite fulfilling the rare disease assumption overall, the OR and RR can hardly be considered to be approximately the same. However, the prevalence in the exposed group is 40%, which means is not sufficiently small compared to and therefore . and With a prevalence of 0.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (1)
Épidémiologie
L'épidémiologie est une discipline scientifique qui étudie les problèmes de santé dans les populations humaines, leur fréquence, leur distribution dans le temps et dans l’espace, ainsi que les facteurs exerçant une influence sur la santé et les maladies de populations. L'étude de la répartition et des déterminants des événements de santé sert de fondement à la logique des interventions faites en matière de santé publique et de médecine préventive.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.