A pitot-static system is a system of pressure-sensitive instruments that is most often used in aviation to determine an aircraft's airspeed, Mach number, altitude, and altitude trend. A pitot-static system generally consists of a pitot tube, a static port, and the pitot-static instruments. Other instruments that might be connected are air data computers, flight data recorders, altitude encoders, cabin pressurization controllers, and various airspeed switches. Errors in pitot-static system readings can be extremely dangerous as the information obtained from the pitot static system, such as altitude, is potentially safety-critical. Several commercial airline disasters have been traced to a failure of the pitot-static system.
The Code of Federal Regulations (CFRs) require pitot-static systems installed in US-registered aircraft to be tested and inspected every 24 calendar months.
The pitot-static system of instruments uses the principle of air pressure gradient. It works by measuring pressures or pressure differences and using these values to assess the speed and altitude. These pressures can be measured either from the static port (static pressure) or the pitot tube (pitot pressure). The static pressure is used in all measurements, while the pitot pressure is used only to determine airspeed.
The pitot pressure is obtained from the pitot tube. The pitot pressure is a measure of ram air pressure (the air pressure created by vehicle motion or the air ramming into the tube), which, under ideal conditions, is equal to stagnation pressure, also called total pressure. The pitot tube is most often located on the wing or front section of an aircraft, facing forward, where its opening is exposed to the relative wind. By situating the pitot tube in such a location, the ram air pressure is more accurately measured since it will be less distorted by the aircraft's structure. When airspeed increases, the ram air pressure is increased, which can be translated by the airspeed indicator.
The static pressure is obtained through a static port.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours vise à approfondir la compréhension des lois de fonctionnement de plusieurs principes mécaniques majeurs et largement utilisés en construction de machines, en vue d'être capable d'en faire le
The course deals with the design of precast reinforced concrete structures, both for bridges and for buildings.
The course is focused in learning by projects supplemented by some lectures by the teac
Several airplanes crashes throughout the past decades are linked to the failure of the airplane flow velocity sensor known as pitot device or pitot tube. The study of its behavior in blockage, either due to human errors or due to environmental factors, cou ...
Airfoil stall plays a central role in the design of safe and efficient lifting surfaces. We typically distinguish between static and dynamic stall based on the unsteady rate of change of an airfoil’s angle of attack. Despite the somewhat misleading denotat ...
Position error is one of the errors affecting the systems in an aircraft for measuring airspeed and altitude. It is not practical or necessary for an aircraft to have an airspeed indicating system and an altitude indicating system that are exactly accurate. A small amount of error is tolerable. It is caused by the location of the static vent that supplies air pressure to the airspeed indicator and altimeter. All aircraft are equipped with a small hole in the surface of the aircraft called the static port.
A pitot tube (ˈpiːtoʊ ; also pitot probe) measures fluid flow velocity. It was invented by a French engineer, Henri Pitot, in the early 18th century, and was modified to its modern form in the mid-19th century by a French scientist, Henry Darcy. It is widely used to determine the airspeed of aircraft; the water speed of boats; and the flow velocity of liquids, air, and gases in industry. The basic pitot tube consists of a tube pointing directly into the fluid flow.
In fluid mechanics the term static pressure has several uses: In the design and operation of aircraft, static pressure is the air pressure in the aircraft's static pressure system. In fluid dynamics, many authors use the term static pressure in preference to just pressure to avoid ambiguity. Often however, the word ‘static’ may be dropped and in that usage pressure is the same as static pressure at a nominated point in a fluid. The term static pressure is also used by some authors in fluid statics.
Small-scale turbomachinery is increasingly used in carbon-free energy conversion systems, such as commercial or domestic scale heat pumps, fuels cells for transportation and waste heat recovery. The usage of aerodynamic bearings allows the design of compac ...