A containment building is a reinforced steel, concrete or lead structure enclosing a nuclear reactor. It is designed, in any emergency, to contain the escape of radioactive steam or gas to a maximum pressure in the range of . The containment is the fourth and final barrier to radioactive release (part of a nuclear reactor's defence in depth strategy), the first being the fuel ceramic itself, the second being the metal fuel cladding tubes, the third being the reactor vessel and coolant system. Each nuclear plant in the United States is designed to withstand certain conditions which are spelled out as "Design Basis Accidents" in the Final Safety Analysis Report (FSAR). The FSAR is available for public viewing, usually at a public library near the nuclear plant. The containment building itself is typically an airtight steel structure enclosing the reactor normally sealed off from the outside atmosphere. The steel is either free-standing or attached to the concrete missile shield. In the United States, the design and thickness of the containment and the missile shield are governed by federal regulations (10 CFR 50.55a), and must be strong enough to withstand the impact of a fully loaded passenger airliner without rupture. While the containment plays a critical role in the most severe nuclear reactor accidents, it is only designed to contain or condense steam in the short term (for large break accidents) and long term heat removal still must be provided by other systems. In the Three Mile Island accident the containment pressure boundary was maintained, but due to insufficient cooling, some time after the accident, radioactive gas was intentionally released from containment by operators to prevent over pressurization. This, combined with further failures, caused the release of up to 13 million curies of radioactive gas to atmosphere during the accident. While the Fukushima Daiichi plant had operated safely since 1971, an earthquake and tsunami well beyond the design basis resulted in failure of AC power, backup generators and batteries which defeated all safety systems.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
ME-464: Introduction to nuclear engineering
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
PHYS-443: Physics of nuclear reactors
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
ChE-340: The engineering of chemical reactions
Ce cours applique les concepts de la cinétique chimique et des bilans de masse et d'énergie pour résoudre les problèmes de génie des réactions chimiques, en mettant l'accent sur les applications indus
Related lectures (32)
Introduction to Nuclear Engineering
Explores nuclear engineering topics such as reactor technology, safety principles, and emergency core cooling systems.
Introduction to Nuclear Engineering
Covers reactor technology, safety functions, accident scenarios, and emergency systems in nuclear engineering.
Introduction to Nuclear Engineering
Covers various topics in nuclear engineering, including reactor technology, nuclear physics, and safety analysis assumptions.
Show more
Related publications (41)

Monte Carlo analysis of BWR geometries using a cycle check-up methodology

Mathieu Hursin, Hakim Ferroukhi, Dimitri Rochman, Abdelhamid Dokhane, Alexander Vasiliev

Recent fuel anomalies at a Swiss power plant have motivated the development at PSI of the "Cycle Check-Up" (CHUP) methodology which consists in performing Monte Carlo transport calculations using nuclide compositions and thermal-hydraulic boundary conditio ...
Oxford2023

Extension of GeN-Foam to departure from nucleate boiling prediction and validation against the OECD/NRC PSBT benchmark

Carlo Fiorina, Yuhang Niu, Hao Qin

The prediction of departure from nucleate boiling (DNB) has always been a crucial aspect of thermal-hydraulic codes for the analysis of Light Water Reactors. In this paper, GeN-Foam, a multi-physics code developed based on OpenFOAM, has been enhanced to in ...
Lausanne2023

Validation of spent nuclear fuel decay heat calculations using Polaris, ORIGEN and CASMO5

Andreas Pautz, Dimitri Rochman, Stefano Caruso

Decay heat calculations of spent nuclear fuel (SNF) using Polaris and ORIGEN codes in the SCALE code sys-tem, and CASMO5 code, are validated using measurements from the Clab and GE-Morris facilities. Multiple hypothesis testing, relying on permutations and ...
PERGAMON-ELSEVIER SCIENCE LTD2022
Show more
Related concepts (16)
Ignalina Nuclear Power Plant
The Ignalina Nuclear Power Plant (Ignalinos atominė elektrinė, IAE) is a decommissioned two-unit RBMK-1500 nuclear power station in Visaginas Municipality, Lithuania. It was named after the nearby city of Ignalina. Due to the plant's similarities to the infamous Chernobyl Nuclear Power Plant in both reactor design and lack of a robust containment building, Lithuania agreed to close the plant as part of its accession agreement to the European Union.
Chernobyl disaster
The Chernobyl disaster was a nuclear accident that occurred on 26 April 1986 at the No. 4 reactor in the Chernobyl Nuclear Power Plant, near the city of Pripyat in the north of the Ukrainian SSR in the Soviet Union. Called the world's worst-ever civil nuclear incident, it is one of only two nuclear energy accidents rated at seven—the maximum severity—on the International Nuclear Event Scale, the other being the 2011 Fukushima nuclear disaster in Japan.
Nuclear Regulatory Commission
The Nuclear Regulatory Commission (NRC) is an independent agency of the United States government tasked with protecting public health and safety related to nuclear energy. Established by the Energy Reorganization Act of 1974, the NRC began operations on January 19, 1975, as one of two successor agencies to the United States Atomic Energy Commission. Its functions include overseeing reactor safety and security, administering reactor licensing and renewal, licensing radioactive materials, radionuclide safety, and managing the storage, security, recycling, and disposal of spent fuel.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.