In fluid dynamics, hydrodynamic stability is the field which analyses the stability and the onset of instability of fluid flows. The study of hydrodynamic stability aims to find out if a given flow is stable or unstable, and if so, how these instabilities will cause the development of turbulence. The foundations of hydrodynamic stability, both theoretical and experimental, were laid most notably by Helmholtz, Kelvin, Rayleigh and Reynolds during the nineteenth century. These foundations have given many useful tools to study hydrodynamic stability. These include Reynolds number, the Euler equations, and the Navier–Stokes equations. When studying flow stability it is useful to understand more simplistic systems, e.g. incompressible and inviscid fluids which can then be developed further onto more complex flows. Since the 1980s, more computational methods are being used to model and analyse the more complex flows.
To distinguish between the different states of fluid flow one must consider how the fluid reacts to a disturbance in the initial state. These disturbances will relate to the initial properties of the system, such as velocity, pressure, and density. James Clerk Maxwell expressed the qualitative concept of stable and unstable flow nicely when he said: "when an infinitely small variation of the present state will alter only by an infinitely small quantity the state at some future time, the condition of the system, whether at rest or in motion, is said to be stable but when an infinitely small variation in the present state may bring about a finite difference in the state of the system in a finite time, the system is said to be unstable."
That means that for a stable flow, any infinitely small variation, which is considered a disturbance, will not have any noticeable effect on the initial state of the system and will eventually die down in time. For a fluid flow to be considered stable it must be stable with respect to every possible disturbance. This implies that there exists no mode of disturbance for which it is unstable.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course focuses on the physical mechanisms at the origin of the transition of a flow from laminar to turbulent using the hydrodynamic instability theory.
The dynamics of ordinary matter in the Universe follows the laws of (magneto)hydrodynamics. In this course, the system of equations that describes astrophysical fluids will be discussed on the basis o
In dynamical systems instability means that some of the outputs or internal states increase with time, without bounds. Not all systems that are not stable are unstable; systems can also be marginally stable or exhibit limit cycle behavior. In structural engineering, a structural beam or column can become unstable when excessive compressive load is applied. Beyond a certain threshold, structural deflections magnify stresses, which in turn increases deflections. This can take the form of buckling or crippling.
Explores various flow instabilities and the historical context of hydrodynamic linear instability theory, discussing physical mechanisms and analytical approaches.
We study the drainage of a viscous liquid film coating the outside of a solid horizontal cylinder, where gravity acts vertically. We focus on the limit of large Ohnesorge numbers Oh, where inertia is negligible compared to viscous effects. We first study t ...
Amer Physical Soc2024
We study the flow stability and spatiotemporal spectral dynamics of cellulose nanocrystal (CNC) suspensions in a custom Taylor-Couette flow cell using the intrinsic shear induced birefringence and liquid crystalline properties of CNC suspensions for flow v ...
Aip Publishing2024
, , ,
We study numerically and theoretically the gravity-driven flow of a viscous liquid film coating the inner side of a horizontal cylindrical tube and surrounding a shear-free dynamically inert gaseous core. The liquid-gas interface is prone to the Rayleigh-P ...