Summary
Nutation () is a rocking, swaying, or nodding motion in the axis of rotation of a largely axially symmetric object, such as a gyroscope, planet, or bullet in flight, or as an intended behaviour of a mechanism. In an appropriate reference frame it can be defined as a change in the second Euler angle. If it is not caused by forces external to the body, it is called free nutation or Euler nutation. A pure nutation is a movement of a rotational axis such that the first Euler angle is constant. Therefore it can be seen that the circular red arrow in the diagram indicates the combined effects of precession and nutation, while nutation in the absence of precession would only change the tilt from vertical (second Euler angle). However, in spacecraft dynamics, precession (a change in the first Euler angle) is sometimes referred to as nutation. If a top is set at a tilt on a horizontal surface and spun rapidly, its rotational axis starts precessing about the vertical. After a short interval, the top settles into a motion in which each point on its rotation axis follows a circular path. The vertical force of gravity produces a horizontal torque τ about the point of contact with the surface; the top rotates in the direction of this torque with an angular velocity Ω such that at any moment (vector cross product) where L is the instantaneous angular momentum of the top. Initially, however, there is no precession, and the upper part of the top falls sideways and downward, thereby tilting. This gives rise to an imbalance in torques that starts the precession. In falling, the top overshoots the amount of tilt at which it would precess steadily and then oscillates about this level. This oscillation is called nutation. If the motion is damped, the oscillations will die down until the motion is a steady precession. The physics of nutation in tops and gyroscopes can be explored using the model of a heavy symmetrical top with its tip fixed. (A symmetrical top is one with rotational symmetry, or more generally one in which two of the three principal moments of inertia are equal.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.