Astrophysical plasma is plasma outside of the Solar System. It is studied as part of astrophysics and is commonly observed in space. The accepted view of scientists is that much of the baryonic matter in the universe exists in this state.
When matter becomes sufficiently hot and energetic, it becomes ionized and forms a plasma. This process breaks matter into its constituent particles which includes negatively charged electrons and positively charged ions. These electrically charged particles are susceptible to influences by local electromagnetic fields. This includes strong fields generated by stars, and weak fields which exist in star forming regions, in interstellar space, and in intergalactic space. Similarly, electric fields are observed in some stellar astrophysical phenomena, but they are inconsequential in very low-density gaseous media.
Astrophysical plasma is often differentiated from space plasma, which typically refers to the plasma of the Sun, the solar wind, and the ionospheres and magnetospheres of the Earth and other planets.
Plasmas in stars can both generate and interact with magnetic fields, resulting in a variety of dynamic astrophysical phenomena. These phenomena are sometimes observed in spectra due to the Zeeman effect. Other forms of astrophysical plasmas can be influenced by preexisting weak magnetic fields, whose interactions may only be determined directly by polarimetry or other indirect methods. In particular, the intergalactic medium, the interstellar medium, the interplanetary medium and solar winds consist of diffuse plasmas.
Scientists are interested in active galactic nuclei because such astrophysical plasmas could be directly related to the plasmas studied in laboratories. Many of these phenomena seemingly exhibit an array of complex magnetohydrodynamic behaviors, such as turbulence and instabilities.
In Big Bang cosmology, the entire universe was in a plasma state prior to recombination.
Norwegian explorer and physicist Kristian Birkeland predicted that space is filled with plasma.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
Plasma () is one of four fundamental states of matter, characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, being mostly associated with stars, including the Sun. Extending to the rarefied intracluster medium and possibly to intergalactic regions, plasma can be artificially generated by heating a neutral gas or subjecting it to a strong electromagnetic field.
The interplanetary medium (IPM) or interplanetary space consists of the mass and energy which fills the Solar System, and through which all the larger Solar System bodies, such as planets, dwarf planets, asteroids, and comets, move. The IPM stops at the heliopause, outside of which the interstellar medium begins. Before 1950, interplanetary space was widely considered to either be an empty vacuum, or consisting of "aether". The interplanetary medium includes interplanetary dust, cosmic rays, and hot plasma from the solar wind.
Magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydromagnetics) is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single continuous medium. It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in numerous fields including geophysics, astrophysics, and engineering. The word magnetohydrodynamics is derived from magneto- meaning magnetic field, hydro- meaning water, and dynamics meaning movement.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Simulations of plasma turbulence in a linear plasma device configuration are presented. These simulations are based on a simplified version of the gyrokinetic (GK) model proposed by Frei et al. [J. Plasma Phys. 86, 905860205 (2020)], where the full-F distr ...
The implementation of three-dimensional magnetic fields, such as the ones of stellarators, in the GBS code (Ricci et al 2012 Plasma Phys. Control. Fusion54 124047; Giacomin et al 2022 J. Comput. Phys.464 111294) is presented, and simulation results are dis ...
Delayed 'pair-echo' signal from interactions of very-high-energy gamma rays in the intergalactic medium can be used for the detection of the intergalactic magnetic field (IGMF). We used the data of the Fermi/LAT telescope coupled with LHAASO observatory me ...