Process simulation is used for the design, development, analysis, and optimization of technical processes such as: chemical plants, chemical processes, environmental systems, power stations, complex manufacturing operations, biological processes, and similar technical functions.
Process simulation is a model-based representation of chemical, physical, biological, and other technical processes and unit operations in software. Basic prerequisites for the model are chemical and physical properties of pure components and mixtures, of reactions, and of mathematical models which, in combination, allow the calculation of process properties by the software.
Process simulation software describes processes in flow diagrams where unit operations are positioned and connected by product or educt streams. The software solves the mass and energy balance to find a stable operating point on specified parameters. The goal of a process simulation is to find optimal conditions for a process. This is essentially an optimization problem which has to be solved in an iterative process.
In the example above the feed stream to the column is defined in terms of its chemical and physical properties. This includes the composition of individual molecular species in the stream; the overall mass flowrate; the streams pressure and temperature. For hydrocarbon systems the Vapor-Liquid Equilibrium Ratios (K-Values) or models that are used to define them are specified by the user. The properties of the column are defined such as the inlet pressure and the number of theoretical plates. The duty of the reboiler and overhead condenser are calculated by the model to achieve a specified composition or other parameter of the bottom and/or top product. The simulation calculates the chemical and physical properties of the product streams, each is assigned a unique number which is used in the mass and energy diagram.
Process simulation uses models which introduce approximations and assumptions but allow the description of a property over a wide range of temperatures and pressures which might not be covered by available real data.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Chemical engineering is an engineering field which deals with the study of operation and design of chemical plants as well as methods of improving production. Chemical engineers develop economical commercial processes to convert raw materials into useful products. Chemical engineering uses principles of chemistry, physics, mathematics, biology, and economics to efficiently use, produce, design, transport and transform energy and materials.
A simulation is the imitation of the operation of a real-world process or system over time. Simulations require the use of models; the model represents the key characteristics or behaviors of the selected system or process, whereas the simulation represents the evolution of the model over time. Often, computers are used to execute the simulation. Simulation is used in many contexts, such as simulation of technology for performance tuning or optimizing, safety engineering, testing, training, education, and video games.
The goal of the lecture is to present and apply techniques for the modelling and the thermo-economic optimisation of industrial process and energy systems. The lecture covers the problem statement, th
Through a project, this course will introduce the critical steps in developing a chemical process in the context of industry decarbonisation, from the lab to industrial scale.
Introduction to Chemical Engineering is an introductory course that provides a basic overview of the chemical engineering field. It addresses the formulation and solution of material and energy balanc
Simulation-based optimization models are widely applied to find optimal operating conditions of processes. Often, computational challenges arise from model complexity, making the generation of reliable design solutions difficult. We propose an algorithm fo ...
The formation of water columns inside the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC), which is harmful phenomenon, can be controlled by the GDL's microstructure and material. Using computational fluid dynamics (CFD), a thre ...
Predictive gait simulations currently do not account for environmental or internal noise. We describe a method to solve predictive simulations of human movements in a stochastic environment using a collocation method. The optimization is performed over mul ...