Andreas Floer (ˈfløːɐ; 23 August 1956 – 15 May 1991) was a German mathematician who made seminal contributions to symplectic topology, and mathematical physics, in particular the invention of Floer homology. Floer's first pivotal contribution was a solution of a special case of Arnold's conjecture on fixed points of a symplectomorphism. Because of his work on Arnold's conjecture and his development of instanton homology, he achieved wide recognition and was invited as a plenary speaker for the International Congress of Mathematicians held in Kyoto in August 1990. He received a Sloan Fellowship in 1989.
He was an undergraduate student at the Ruhr-Universität Bochum and received a Diplom in mathematics in 1982. He then went to the University of California, Berkeley, living at Barrington Hall of the Berkeley Student Cooperative, and undertook Ph.D. work on monopoles on 3-manifolds, under the supervision of Clifford Taubes; but he did not complete it when interrupted by his obligatory alternative service in Germany. He received his Dr. rer. nat. at Bochum in 1984, under the supervision of Eduard Zehnder.
In 1988 he became an Assistant Professor at the University of California, Berkeley and was promoted to Full Professor of Mathematics in 1990. From 1990 he was Professor of Mathematics at the Ruhr-Universität Bochum, until his suicide in 1991 as a result of depression.
"Andreas Floer's life was tragically interrupted, but his mathematical visions and striking contributions have provided powerful methods which are being applied to problems which seemed to be intractable only a few years ago."
Simon Donaldson wrote: "The concept of Floer homology is one of the most striking developments in differential geometry over the past 20 years. ... The ideas have led to great advances in the areas of low-dimensional topology and symplectic geometry and are intimately related to developments in Quantum Field Theory" and "the full richness of Floer's theory is only beginning to be explored".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold.
A new relation between homoclinic points and Lagrangian Floer homology is presented: in dimension two, we construct a Floer homology generated by primary homoclinic points. We compute two examples and prove an invariance theorem. Moreover, we establish a l ...
We point out an interesting relation between transport in Hamiltonian dynamics and Floer homology. We generalize homoclinic Floer homology from R-2 and closed surfaces to two-dimensional cylinders. The relative symplectic action of two homoclinic points is ...