Young's modulus , the Young modulus, or the modulus of elasticity in tension or axial compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied lengthwise. It quantifies the relationship between tensile/compressive stress (force per unit area) and axial strain (proportional deformation) in the linear elastic region of a material and is determined using the formula:
Young's moduli are typically so large that they are expressed not in pascals but in gigapascals (GPa).
Example:
Silly Putty (increasing pressure: length increases quickly, meaning low )
Aluminium (increasing pressure: length increases slowly, meaning high )
Higher Young's modulus corresponds to greater (lengthwise) stiffness.
Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler. The first experiments that used the concept of Young's modulus in its current form were performed by the Italian scientist Giordano Riccati in 1782, pre-dating Young's work by 25 years. The term modulus is derived from the Latin root term modus which means measure.
Linear elasticity
A solid material will undergo elastic deformation when a small load is applied to it in compression or extension. Elastic deformation is reversible, meaning that the material returns to its original shape after the load is removed.
At near-zero stress and strain, the stress–strain curve is linear, and the relationship between stress and strain is described by Hooke's law that states stress is proportional to strain. The coefficient of proportionality is Young's modulus. The higher the modulus, the more stress is needed to create the same amount of strain; an idealized rigid body would have an infinite Young's modulus. Conversely, a very soft material (such as a fluid) would deform without force, and would have zero Young's modulus.
Not many materials are linear and elastic beyond a small amount of deformation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after removal. This is in contrast to plasticity, in which the object fails to do so and instead remains in its deformed state. The physical reasons for elastic behavior can be quite different for different materials.
Ultimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or in notation) is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials the ultimate tensile strength is close to the yield point, whereas in ductile materials the ultimate tensile strength can be higher. The ultimate tensile strength is usually found by performing a tensile test and recording the engineering stress versus strain.
In continuum mechanics, stress is a physical quantity that describes forces present during deformation. An object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has units of force per area, such as newtons per square meter (N/m2) or pascal (Pa).
Explores the structure and mechanics of the arterial wall, focusing on collagen, elastin, pressure-diameter relation, compliance, and viscoelastic effects.
Ce cours constitue une introduction aux principes qui régissent l'élaboration, la microstructure et les propriétés des matériaux métalliques. Trois systèmes principaux d'alliages (Al, Cu, Fe) seront u
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Mechanical resonators are widely used in sensors, transducers and optomechanical systems, where mechanical dissipation sets the ultimate limit to performance. Over the past 15 years, the quality factors in strained mechanical resonators have increased by f ...
Berlin2024
, ,
Interface stress is a fundamental descriptor for interphase boundaries and is defined in strict relation to the interface energy. In nanomultilayers with their intrinsically high interface density, the functional properties are dictated by the interface st ...
This data package supports the publication 'Complexity of crack front geometry enhances toughness of brittle solids' by Xinyue Wei, Chenzhuo Li, Cían McCarthy, and John M. Kolinski Nature physics (2024) - https://doi.org/10.1038/s41567-024-02435-x DOI: 1 ...