Negligible senescence is a term coined by biogerontologist Caleb Finch to denote organisms that do not exhibit evidence of biological aging (senescence), such as measurable reductions in their reproductive capability, measurable functional decline, or rising death rates with age. There are many species where scientists have seen no increase in mortality after maturity. This may mean that the lifespan of the organism is so long that researchers' subjects have not yet lived up to the time when a measure of the species' longevity can be made. Turtles, for example, were once thought to lack senescence, but more extensive observations have found evidence of decreasing fitness with age.
Study of negligibly senescent animals may provide clues that lead to better understanding of the aging process and influence theories of aging. The phenomenon of negligible senescence in some animals is a traditional argument for attempting to achieve similar negligible senescence in humans by technological means.
There are also organisms that exhibit negative senescence, whereby mortality chronologically decreases as the organism ages, for all or part of the life cycle, in disagreement with the Gompertz–Makeham law of mortality (see also Late-life mortality deceleration). Furthermore, there are species that have been observed to regress to a larval state and regrow into adults multiple times, such as Turritopsis dohrnii.
Some fish, such as some varieties of sturgeon and rougheye rockfish, and some tortoises and turtles are thought to be negligibly senescent, although recent research on turtles has uncovered evidence of senescence in the wild. The age of a captured fish specimen can be measured by examining growth patterns similar to tree rings on the otoliths (parts of motion-sensing organs).
In 2018, naked mole-rats were identified as the first mammal to defy the Gompertz–Makeham law of mortality, and achieve negligible senescence. It has been speculated, however, that this may be simply a "time-stretching" effect primarily due to their very slow (and cold-blooded and hypoxic) metabolism.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course covers in detail molecular mechanisms of cancer development with emphasis on cell cycle control, genome stability, oncogenes and tumor suppressor genes.
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
Life extension is the concept of extending the human lifespan, either modestly through improvements in medicine or dramatically by increasing the maximum lifespan beyond its generally-settled limit of 125 years. Several researchers in the area, along with "life extensionists", "immortalists" or "longevists" (those who wish to achieve longer lives themselves), postulate that future breakthroughs in tissue rejuvenation, stem cells, regenerative medicine, molecular repair, gene therapy, pharmaceuticals, and organ replacement (such as with artificial organs or xenotransplantations) will eventually enable humans to have indefinite lifespans (agerasia) through complete rejuvenation to a healthy youthful condition.
Ageing (or aging in American English) is the process of becoming older. The term refers mainly to humans, many other animals, and fungi, whereas for example, bacteria, perennial plants and some simple animals are potentially biologically immortal. In a broader sense, ageing can refer to single cells within an organism which have ceased dividing, or to the population of a species. In humans, ageing represents the accumulation of changes in a human being over time and can encompass physical, psychological, and social changes.
Senescence (sɪˈnɛsəns) or biological aging is the gradual deterioration of functional characteristics in living organisms. The word senescence can refer to either cellular senescence or to senescence of the whole organism. Organismal senescence involves an increase in death rates and/or a decrease in fecundity with increasing age, at least in the latter part of an organism's life cycle. Senescence is the inevitable fate of almost all multicellular organisms with germ-soma separation, but it can be delayed.
Explores replicative immortality in cancer cells, focusing on telomere erosion, telomerase activity, and the role of p53 in maintaining genomic stability.
CAR-T cell therapy has shown remarkable success in treating hematopoietic malignancies, but its efficacy in solid tumors is limited by T cell dysfunction, including exhaustion and senescence. In this study, we designed metabolically armored CAR-T cells to ...
The innate immune system has evolved to detect pathogens through germlineencoded
pattern recognition receptors (PRRs). Nucleic acid sensors, a defined class
of PRRs, bind to microbial and viral nucleic acids and trigger the production of type
I interferons ...
Age-associated changes in chromatin structure have a major impact on organismal longevity. Despite being a central part of the ageing process, the organismal responses to the changes in chromatin organization remain unclear. Here we show that moderate dist ...