The history of geodesy deals with the historical development of measurements and representations of the Earth. The corresponding scientific discipline, geodesy (/dʒiːˈɒdɪsi/), began in pre-scientific antiquity and blossomed during the Age of Enlightenment.
Early ideas about the figure of the Earth held the Earth to be flat (see flat Earth) and the heavens a physical dome spanning over it. Two early arguments for a spherical Earth were that lunar eclipses were seen as circular shadows and that Polaris is seen lower in the sky as one travels South.
Though the earliest written mention of a spherical Earth comes from ancient Greek sources, there is no account of how the sphericity of Earth was discovered, or if it was initially simply a guess. A plausible explanation given by the historian Otto E. Neugebauer is that it was "the experience of travellers that suggested such an explanation for the variation in the observable altitude of the pole and the change in the area of circumpolar stars, a change that was quite drastic between Greek settlements" around the eastern Mediterranean Sea, particularly those between the Nile Delta and Crimea.
Another possible explanation can be traced back to earlier Phoenician sailors. The first circumnavigation of Africa is described as being undertaken by Phoenician explorers employed by Egyptian pharaoh Necho II c. 610–595 BC. In The Histories, written 431–425 BC, Herodotus cast doubt on a report of the Sun observed shining from the north. He stated that the phenomenon was observed by Phoenician explorers during their circumnavigation of Africa (The Histories, 4.42) who claimed to have had the Sun on their right when circumnavigating in a clockwise direction. To modern historians, these details confirm the truth of the Phoenicians' report. The historian Dmitri Panchenko hypothesizes that it was the Phoenician circumnavigation of Africa that inspired the theory of a spherical Earth, the earliest mention of which was made by the philosopher Parmenides in the 5th century BC.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Arc measurement, sometimes degree measurement (Gradmessung), is the astrogeodetic technique of determining of the radius of Earth – more specifically, the local Earth radius of curvature of the figure of the Earth – by relating the latitude difference (sometimes also the longitude difference) and the geographic distance (arc length) surveyed between two locations on Earth's surface.
Figure of the Earth is a term of art in geodesy that refers to the size and shape used to model Earth. The size and shape it refers to depend on context, including the precision needed for the model. A sphere is a well-known historical approximation of the figure of the Earth that is satisfactory for many purposes. Several models with greater accuracy (including ellipsoid) have been developed so that coordinate systems can serve the precise needs of navigation, surveying, cadastre, land use, and various other concerns.
In geodesy and navigation, a meridian arc is the curve between two points on the Earth's surface having the same longitude. The term may refer either to a segment of the meridian, or to its length. The purpose of measuring meridian arcs is to determine a figure of the Earth. One or more measurements of meridian arcs can be used to infer the shape of the reference ellipsoid that best approximates the geoid in the region of the measurements.
Bases de la géomatique pour les ingénieur·e·s civil et en environnement. Présentation des méthodes d'acquisition, de gestion et de représentation des géodonnées. Apprentissage pratique avec des méthod
L’histoire commence avec une halle industrielle issue des ateliers Eiffel, démantelée, abandonnée au bord du Rhône, à Arles, et qui attendait une nouvelle vie. Ses fragments, chargés sur des bateaux, vont remonter le cours du fleuve qui louvoie dans les va ...
2020
, , , ,
Purpose: This study aims to evaluate two distinct approaches for fiber radius estimation using diffusion-relaxation MRI data acquired in biomimetic microfiber phantoms that mimic hollow axons. The methods considered are the spherical mean power-law approac ...
We present a weak form implementation of the nonlinear axisymmetric shell equations. This implementation is suitable to study the nonlinear deformations of axisymmetric shells, with the capability of considering a general mid-surface shape, non-homogeneous ...