A neutralizing antibody (NAb) is an antibody that defends a cell from a pathogen or infectious particle by neutralizing any effect it has biologically. Neutralization renders the particle no longer infectious or pathogenic.
Neutralizing antibodies are part of the humoral response of the adaptive immune system against viruses, intracellular bacteria and microbial toxin. By binding specifically to surface structures (antigen) on an infectious particle, neutralizing antibodies prevent the particle from interacting with its host cells it might infect and destroy.
In order to enter cells, pathogens, such as circulating viral particles or extracellular bacteria, use molecules on their surfaces to interact with the cell surface receptors of their target cell which allows them to enter the cell and start their replication cycle. Neutralizing antibodies can inhibit infectivity by binding to the pathogen and blocking the molecules needed for cell entry. This can be due to the antibodies statically interfering with the pathogens, or toxins attaching to host cell receptors. In case of a viral infection, NAbs can bind to glycoproteins of enveloped viruses or capsid proteins of non-enveloped viruses.
Furthermore, neutralizing antibodies can act by preventing particles from undergoing structural changes often needed for successful cell entry. For example, neutralizing antibodies can prevent conformational changes of viral proteins that mediate the membrane fusion needed for entry into the host cell. In some cases, the virus is unable to infect even after the antibody dissociates. The pathogen-antibody complex is eventually taken up and degraded by macrophages.
Neutralizing antibodies are also important in neutralizing the toxic effects of bacterial toxins. An example of a neutralizing antibody is diphtheria antitoxin, which can neutralize the biological effects of diphtheria toxin. Neutralizing antibodies are not effective against extracellular bacteria, as the binding of antibodies does not prevent bacteria from replicating.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Immunoengineering is an emerging field where engineering principles are grounded in immunology. This course provides students a broad overview of how engineering approaches can be utilized to study im
This course discusses the molecular basis of diseases and how drugs work. Concepts and processes employed in today's drug discovery and development are covered. The first part of the course focuses on
Antibody-dependent enhancement (ADE), sometimes less precisely called immune enhancement or disease enhancement, is a phenomenon in which binding of a virus to suboptimal antibodies enhances its entry into host cells, followed by its replication. The suboptimal antibodies can result from natural infection or from vaccination. ADE may cause enhanced respiratory disease, but is not limited to respiratory disease. It has been observed in HIV, RSV virus and Dengue virus and is monitored for in vaccine development.
Coronavirus disease 2019 (COVID-19) is a contagious disease caused by the virus SARS-CoV-2. The first known case was identified in Wuhan, China, in December 2019. The disease quickly spread worldwide, resulting in the COVID-19 pandemic. The symptoms of COVID‐19 are variable but often include fever, cough, headache, fatigue, breathing difficulties, loss of smell, and loss of taste. Symptoms may begin one to fourteen days after exposure to the virus. At least a third of people who are infected do not develop noticeable symptoms.
In immunology, clonal selection theory explains the functions of cells of the immune system (lymphocytes) in response to specific antigens invading the body. The concept was introduced by Australian doctor Frank Macfarlane Burnet in 1957, in an attempt to explain the great diversity of antibodies formed during initiation of the immune response. The theory has become the widely accepted model for how the human immune system responds to infection and how certain types of B and T lymphocytes are selected for destruction of specific antigens.
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
The disclosure provides antibodies, or antigen-binding fragments thereof, and use thereof in prophylaxis, treatment and/or attenuation of a SARS-CoV-2 virus infection. ...
Crimean-Congo Haemorrhagic Fever Virus (CCHFV) is spread by infected ticks or direct contact with blood, tissues and fluids from infected patients or livestock. Infection with CCHFV causes severe haemorrhagic fever in humans which is fatal in up to 83 % of ...
Before the COVID-19 pandemic, viruses were not a major priority for the scientific community. Today, many events have changed the world and the importance of studying viruses, vaccines, and antiviral drugs is fully appreciated. The development of effective ...