Gynoecium (ɡaɪˈniːsi.əm,_dʒɪˈniːʃi.əm; ; : gynoecia) is most commonly used as a collective term for the parts of a flower that produce ovules and ultimately develop into the fruit and seeds. The gynoecium is the innermost whorl of a flower; it consists of (one or more) pistils and is typically surrounded by the pollen-producing reproductive organs, the stamens, collectively called the androecium. The gynoecium is often referred to as the "female" portion of the flower, although rather than directly producing female gametes (i.e. egg cells), the gynoecium produces megaspores, each of which develops into a female gametophyte which then produces egg cells.
The term gynoecium is also used by botanists to refer to a cluster of archegonia and any associated modified leaves or stems present on a gametophyte shoot in mosses, liverworts, and hornworts. The corresponding terms for the male parts of those plants are clusters of antheridia within the androecium. Flowers that bear a gynoecium but no stamens are called pistillate or carpellate. Flowers lacking a gynoecium are called staminate.
The gynoecium is often referred to as female because it gives rise to female (egg-producing) gametophytes; however, strictly speaking sporophytes do not have a sex, only gametophytes do. Gynoecium development and arrangement is important in systematic research and identification of angiosperms, but can be the most challenging of the floral parts to interpret.
Unlike most animals, plants grow new organs after embryogenesis, including new roots, leaves, and flowers. In the flowering plants, the gynoecium develops in the central region of the flower as a carpel or in groups of fused carpels. After fertilization, the gynoecium develops into a fruit that provides protection and nutrition for the developing seeds, and often aids in their dispersal. The gynoecium has several specialized tissues. The tissues of the gynoecium develop from genetic and hormonal interactions along three-major axes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The stamen (: stamina or stamens) is the pollen-producing reproductive organ of a flower. Collectively the stamens form the androecium. A stamen typically consists of a stalk called the filament and an anther which contains microsporangia. Most commonly anthers are two-lobed (each lobe is termed a locule) and are attached to the filament either at the base or in the middle area of the anther. The sterile tissue between the lobes is called the connective, an extension of the filament containing conducting strands.
An achene (əˈkiːn; ), also sometimes called akene and occasionally achenium or achenocarp, is a type of simple dry fruit produced by many species of flowering plants. Achenes are monocarpellate (formed from one carpel) and indehiscent (they do not open at maturity). Achenes contain a single seed that nearly fills the pericarp, but does not adhere to it. In many species, what is called the "seed" is an achene, a fruit containing the seed.
A flower, sometimes known as a bloom or blossom, is the reproductive structure found in flowering plants (plants of the division Angiospermae). Flowers produce gametophytes, which in flowering plants consist of a few haploid cells which produce gametes. The "male" gametophyte, which produces non-motile sperm, is enclosed within pollen grains; the "female" gametophyte is contained within the ovule. When pollen from the anther of a flower is deposited on the stigma, this is called pollination.
We present a microrobotic platform that combines MEMS-based capacitive force sensing technology, a dual-stage positioning system and a real-time control and acquisition architecture with computer vision automation to manipulate and mechanically characteriz ...
IEEE2014
Plant reproduction relies on the highly regulated growth of the pollen tube for sperm delivery. This process is controlled by secreted RALF signaling peptides, which have previously been shown to be perceived by Catharanthus roseus RLK1-like (CrRLK1Ls) mem ...
NATL ACAD SCIENCES2020
, ,
In this article, we introduce the real-time cellular force microscope (RT-CFM), a high-throughput microrobotic platform for mechanical stimulation and characterization of single cells. We developed computer vision algorithms that fully automate the positio ...