Summary
The interplanetary dust cloud, or zodiacal cloud (as the source of the zodiacal light), consists of cosmic dust (small particles floating in outer space) that pervades the space between planets within planetary systems, such as the Solar System. This system of particles has been studied for many years in order to understand its nature, origin, and relationship to larger bodies. There are several methods to obtain space dust measurement. In the Solar System, the interplanetary dust particles have a role in scattering sunlight and in emitting thermal radiation, which is the most prominent feature of the night sky's radiation, with wavelengths ranging 5–50 μm. The particle sizes of grains characterizing the infrared emission near Earth's orbit typically range 10–100 μm. Microscopic impact craters on lunar rocks returned by the Apollo Program revealed the size distribution of cosmic dust particles bombarding the lunar surface. The ’’Grün’’ distribution of interplanetary dust at 1 AU, describes the flux of cosmic dust from nm to mm sizes at 1 AU. The total mass of the interplanetary dust cloud is approximately the mass of an asteroid of radius 15 km (with density of about 2.5 g/cm3). Straddling the zodiac along the ecliptic, this dust cloud is visible as the zodiacal light in a moonless and naturally dark sky and is best seen sunward during astronomical twilight. The Pioneer spacecraft observations in the 1970s linked the zodiacal light with the interplanetary dust cloud in the Solar System. Also, the VBSDC instrument on the New Horizons probe was designed to detect impacts of the dust from the zodiacal cloud in the Solar System. The sources of interplanetary dust particles (IDPs) include at least: asteroid collisions, cometary activity and collisions in the inner Solar System, Kuiper belt collisions, and interstellar medium grains (Backman, D., 1997). The origins of the zodiacal cloud have long been subject to one of the most heated controversies in the field of astronomy.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.