Photochromism is the reversible transformation of a chemical species (photoswitch) between two forms by the absorption of electromagnetic radiation (photoisomerization), where the two forms have different absorption spectra. In plain language, this can be described as a reversible change of color upon exposure to light.
One of the most famous reversible photochromic applications is color changing lenses for sunglasses. The largest limitation in using photochromic technology is that the materials cannot be made stable enough to withstand thousands of hours of outdoor exposure so long-term outdoor applications are not appropriate at this time.
The switching speed of photochromic dyes is highly sensitive to the rigidity of the environment around the dye. As a result, they switch most rapidly in solution and slowest in the rigid environment like a polymer lens. In 2005 it was reported that attaching flexible polymers with low glass transition temperature (for example siloxanes or polybutyl acrylate) to the dyes allows them to switch much more rapidly in a rigid lens. Some spirooxazines with siloxane polymers attached switch at near solution-like speeds even though they are in a rigid lens matrix.
Photochromic units have been employed extensively in supramolecular chemistry. Their ability to give a light-controlled reversible shape change means that they can be used to make or break molecular recognition motifs, or to cause a consequent shape change in their surroundings. Thus, photochromic units have been demonstrated as components of molecular switches. The coupling of photochromic units to enzymes or enzyme cofactors even provides the ability to reversibly turn enzymes "on" and "off", by altering their shape or orientation in such a way that their functions are either "working" or "broken".
The possibility of using photochromic compounds for data storage was first suggested in 1956 by Yehuda Hirshberg. Since that time, there have been many investigations by various academic and commercial groups, particularly in the area of 3D optical data storage which promises discs that can hold a terabyte of data.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.