In neuroscience, Golgi cells are inhibitory interneurons found within the granular layer of the cerebellum. They were first identified as inhibitory in 1964.
It was also the first example of an inhibitory feedback network, where the inhibitory interneuron was identified anatomically.
These cells synapse onto the dendrite of granule cells and unipolar brush cells. They receive excitatory input from mossy fibres, also synapsing on granule cells, and parallel fibers, which are long granule cell axons. Thereby this circuitry allows for feed-forward and feed-back inhibition of granule cells.
The main synapse made by these cells is a synapse onto the mossy fibre - granule cell excitatory synapse in a glomerulus. The glomerulus is made up of the mossy fibre terminal, granule cell dendrites, the Golgi terminal and is enclosed by a glial coat.
The Golgi cell acts by altering the mossy fibre - granule cell synapse.
The Golgi cells use GABA as their neurotransmitter. The basal level of GABA produces a postsynaptic leak conductance by tonically activating alpha 6-containing GABA-A receptors on the granule cell.
These high-affinity receptors are located both synaptically and extrasynaptically on the granule cell. The synaptic receptors mediate phasic contraction, duration of around 20-30ms whereas the extrasynapatic receptors mediate tonic inhibition of around 200ms, and are activated by synapse spill over.
Additionally the GABA acts on GABA-B receptors which are located presynaptically on the mossy fibre terminal. These inhibit the mossy fibre evoked EPSCs of the granule cell in a temperature and frequency dependent manner. At high mossy firing frequency (10 Hz) there is no effect of GABA acting on presynaptic GABA-B receptors on evoked EPSCs. However, at low (1 Hz) firing the GABA does have an effect on the EPSCs mediated via these presynaptic GABA-B receptors.
A Golgi type I neuron has a long axon that begins in the grey matter of the central nervous system and may extend from there.
It is also known as a projection neuron.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The cerebellum (Latin for "little brain") is a major feature of the hindbrain of all vertebrates. Although usually smaller than the cerebrum, in some animals such as the mormyrid fishes it may be as large as it or even larger. In humans, the cerebellum plays an important role in motor control. It may also be involved in some cognitive functions such as attention and language as well as emotional control such as regulating fear and pleasure responses, but its movement-related functions are the most solidly established.
The course introduces students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies with a focus on the biophysical level.
Explores the neural control of movement, focusing on the cerebellum's role in motor learning and coordination.
Explores neuron classification, highlighting the importance of understanding brain complexity and the challenges in defining cell types.
Explores detailed modeling of ion channels and neuronal morphologies in in silico neuroscience, covering neuron classification, ion channel kinetics, and experimental observations.
Planning and execution of voluntary movement depend on the contribution of distinct classes of neurons in primary motor and premotor areas. However, timing and pattern of activation of GABAergic cells during specific motor behaviors remain only partly unde ...
Aversively-motivated associative learning allows animals to avoid harm and thus ensures survival. Aversive learning can be studied by the fear learning paradigm, in which an innocuous sensory stimulus like a tone (conditioned stimulus, CS), acquires a nega ...
Neurons primarily communicate through release of neurotransmitter from presynaptic specialisations along their axonal arborisations. In order to understand the functional role of a specific neuron, it is therefore of great interest to know the structure of ...