Concept

Endoreduplication

Summary
Endoreduplication (also referred to as endoreplication or endocycling) is replication of the nuclear genome in the absence of mitosis, which leads to elevated nuclear gene content and polyploidy. Endoreplication can be understood simply as a variant form of the mitotic cell cycle (G1-S-G2-M) in which mitosis is circumvented entirely, due to modulation of cyclin-dependent kinase (CDK) activity. Examples of endoreplication characterized in arthropod, mammalian, and plant species suggest that it is a universal developmental mechanism responsible for the differentiation and morphogenesis of cell types that fulfill an array of biological functions. While endoreplication is often limited to specific cell types in animals, it is considerably more widespread in plants, such that polyploidy can be detected in the majority of plant tissues. Endoreplicating cell types that have been studied extensively in model organisms Endoreplication, endomitosis and polytenization are three somewhat different processes resulting in polyploidization of a cell in a regulated manner. In endoreplication cells skip M phase completely, resulting in a mononucleated polyploid cell. Endomitosis is a type of cell cycle variation where mitosis is initiated, but some of the processes are not completed. Depending on how far the cell progresses through mitosis, this will give rise to a mononucleated or binucleated polyploid cell. Polytenization arises with under- or overamplification of some genomic regions, creating polytene chromosomes. Based on the wide array of cell types in which endoreplication occurs, a variety of hypotheses have been generated to explain the functional importance of this phenomenon. Unfortunately, experimental evidence to support these conclusions is somewhat limited: Cell ploidy often correlates with cell size, and in some instances, disruption of endoreplication results in diminished cell and tissue size suggesting that endoreplication may serve as a mechanism for tissue growth.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.